Spaces:
Runtime error
Runtime error
File size: 2,038 Bytes
1909f20 f52f608 4d531d5 1d9a0f0 f52f608 1d9a0f0 f52f608 1d9a0f0 f52f608 1909f20 fd5c436 1909f20 70e05ce 1909f20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
import re
from PIL import Image
from io import BytesIO
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
def predict(inp):
# Check GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load processor
processor = DonutProcessor.from_pretrained("jonathanjordan21/donut_fine_tuning_food_composition_id")
# Load model
model = VisionEncoderDecoderModel.from_pretrained("jonathanjordan21/donut_fine_tuning_food_composition_id")
# Define Json Parser
def get_komposisi(image_path, image=None):
image = Image.open(image_path).convert('RGB') if image== None else image.convert('RGB')
task_prompt = "<s_kmpsi>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
pixel_values = processor(image, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence1 = processor.batch_decode(outputs.sequences)[0]
sequence2 = sequence1.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence3 = re.sub(r"<.*?>", "", sequence2, count=1).strip() # remove first task start token
return processor.token2json(sequence3)
#Generate Output
out = get_komposisi("", inp)
return out
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs="json").launch()
|