Spaces:
Sleeping
Sleeping
import streamlit as st | |
from datasets import load_dataset | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from time import time | |
import torch | |
def load_tok_and_data(lan): | |
st_time = time() | |
tokenizer = AutoTokenizer.from_pretrained("Babelscape/mrebel-large", tgt_lang="tp_XX") | |
tokenizer._src_lang = _Tokens[lan] | |
tokenizer.cur_lang_code_id = tokenizer.convert_tokens_to_ids(_Tokens[lan]) | |
tokenizer.set_src_lang_special_tokens(_Tokens[lan]) | |
dataset = load_dataset('Babelscape/SREDFM', lan, split="test", streaming=True, trust_remote_code=True) | |
dataset = [example for example in dataset.take(1001)] | |
return (tokenizer, dataset) | |
def load_model(): | |
st_time = time() | |
print("+++++ loading Model", time() - st_time) | |
model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/mrebel-large") | |
if torch.cuda.is_available(): | |
_ = model.to("cuda:0") # comment if no GPU available | |
_ = model.eval() | |
print("+++++ loaded model", time() - st_time) | |
return model | |
def extract_triplets_typed(text): | |
triplets = [] | |
relation = '' | |
text = text.strip() | |
current = 'x' | |
subject, relation, object_, object_type, subject_type = '','','','','' | |
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").replace("tp_XX", "").replace("__en__", "").split(): | |
if token == "<triplet>" or token == "<relation>": | |
current = 't' | |
if relation != '': | |
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) | |
relation = '' | |
subject = '' | |
elif token.startswith("<") and token.endswith(">"): | |
if current == 't' or current == 'o': | |
current = 's' | |
if relation != '': | |
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) | |
object_ = '' | |
subject_type = token[1:-1] | |
else: | |
current = 'o' | |
object_type = token[1:-1] | |
relation = '' | |
else: | |
if current == 't': | |
subject += ' ' + token | |
elif current == 's': | |
object_ += ' ' + token | |
elif current == 'o': | |
relation += ' ' + token | |
if subject != '' and relation != '' and object_ != '' and object_type != '' and subject_type != '': | |
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) | |
return triplets | |
st.markdown("""This is a demo for the ACL 2023 paper [RED$^{FM}$: a Filtered and Multilingual Relation Extraction Dataset](https://arxiv.org/abs/2306.09802). The pre-trained model is able to extract triplets for up to 400 relation types from Wikidata or be used in downstream Relation Extraction task by fine-tuning. Find the model card [here](https://huggingface.co/Babelscape/mrebel-large). Read more about it in the [paper](https://arxiv.org/abs/2306.09802) and in the original [repository](https://github.com/Babelscape/rebel#REDFM).""") | |
model = load_model() | |
lan = st.selectbox( | |
'Select a Language', | |
('ar', 'ca', 'de', 'el', 'en', 'es', 'fr', 'hi', 'it', 'ja', 'ko', 'nl', 'pl', 'pt', 'ru', 'sv', 'vi', 'zh'), index=1) | |
_Tokens = {'en': 'en_XX', 'de': 'de_DE', 'ca': 'ca_XX', 'ar': 'ar_AR', 'el': 'el_EL', 'es': 'es_XX', 'it': 'it_IT', 'ja': 'ja_XX', 'ko': 'ko_KR', 'hi': 'hi_IN', 'pt': 'pt_XX', 'ru': 'ru_RU', 'pl': 'pl_PL', 'zh': 'zh_CN', 'fr': 'fr_XX', 'vi': 'vi_VN', 'sv':'sv_SE'} | |
tokenizer, dataset = load_tok_and_data(lan) | |
agree = st.checkbox('Free input', False) | |
if agree: | |
text = st.text_input('Input text (current example in catalan)', 'Els Red Hot Chili Peppers es van formar a Los Angeles per Kiedis, Flea, el guitarrista Hillel Slovak i el bateria Jack Irons.') | |
print(text) | |
else: | |
dataset_example = st.slider('dataset id', 0, 1000, 0) | |
text = dataset[dataset_example]['text'] | |
length_penalty = st.slider('length_penalty', 0, 10, 1) | |
num_beams = st.slider('num_beams', 1, 20, 3) | |
num_return_sequences = st.slider('num_return_sequences', 1, num_beams, 2) | |
gen_kwargs = { | |
"max_length": 256, | |
"length_penalty": length_penalty, | |
"num_beams": num_beams, | |
"num_return_sequences": num_return_sequences, | |
"forced_bos_token_id": None, | |
} | |
model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt') | |
generated_tokens = model.generate( | |
model_inputs["input_ids"].to(model.device), | |
attention_mask=model_inputs["attention_mask"].to(model.device), | |
decoder_start_token_id = tokenizer.convert_tokens_to_ids("tp_XX"), | |
**gen_kwargs, | |
) | |
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False) | |
st.title('Input text') | |
st.write(text) | |
if not agree: | |
st.title('Silver output') | |
entities = dataset[dataset_example]['entities'] | |
relations =[] | |
for trip in dataset[dataset_example]['relations']: | |
relations.append({'subject': entities[trip['subject']], 'predicate': trip['predicate'], 'object': entities[trip['object']]}) | |
st.write(relations) | |
st.title('Prediction text') | |
decoded_preds = [text.replace('<s>', '').replace('</s>', '').replace('<pad>', '') for text in decoded_preds] | |
st.write(decoded_preds) | |
for idx, sentence in enumerate(decoded_preds): | |
st.title(f'Prediction triplets sentence {idx}') | |
st.write(extract_triplets_typed(sentence)) |