bert_sentiment7 / app.py
jonghhhh's picture
Update app.py
af999d7 verified
raw
history blame
1.85 kB
import streamlit as st
import torch
from transformers import BertConfig, BertForSequenceClassification, BertTokenizer
import numpy as np
# Load the model and tokenizer
def load_model():
tokenizer = BertTokenizer.from_pretrained('beomi/kcbert-base')
config = BertConfig.from_pretrained('beomi/kcbert-base', num_labels=7)
model = BertForSequenceClassification.from_pretrained('beomi/kcbert-base', config=config)
model_state_dict = torch.load('sentiment7_model_acc8878.pth', map_location=torch.device('cpu')) # cpu μ‚¬μš©
model.load_state_dict(model_state_dict)
model.eval()
return model, tokenizer
model, tokenizer = load_model()
# Define the inference function
def inference(input_doc):
inputs = tokenizer(input_doc, return_tensors='pt')
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1).squeeze().tolist()
class_idx = {'곡포': 0, 'λ†€λžŒ': 1, 'λΆ„λ…Έ': 2, 'μŠ¬ν””': 3, '쀑립': 4, '행볡': 5, '혐였': 6}
results = {class_name: prob for class_name, prob in zip(class_idx, probs)}
# Find the class with the highest probability
max_prob_class = max(results, key=results.get)
max_prob = results[max_prob_class]
# Display results
return [results, f"κ°€μž₯ κ°•ν•˜κ²Œ λ‚˜νƒ€λ‚œ 감정: {max_prob_class}"]
''' for class_name, prob in results.items():
print(f"{class_name}: {prob:.2%}")'''
# Set up the Streamlit interface
st.title('감정뢄석(Sentiment Analysis)')
st.markdown('<small style="color:grey;">글에 λ‚˜νƒ€λ‚œ 곡포, λ†€λžŒ, λΆ„λ…Έ, μŠ¬ν””, 쀑립, 행볡, 혐였의 정도λ₯Ό λΉ„μœ¨λ‘œ μ•Œλ €λ“œλ¦½λ‹ˆλ‹€.</small>', unsafe_allow_html=True)
user_input = st.text_area("이 곳에 κΈ€ μž…λ ₯(100자 μ΄ν•˜ ꢌμž₯):")
if st.button('μ‹œμž‘'):
result = inference(user_input)
st.write(result[0])
st.write(result[1])