use remove url to load pth
Browse files- _run.py +0 -368
- compute.py +0 -132
- styletts2importable.py +1 -5
_run.py
DELETED
@@ -1,368 +0,0 @@
|
|
1 |
-
from cached_path import cached_path
|
2 |
-
|
3 |
-
from dp.phonemizer import Phonemizer
|
4 |
-
print("NLTK")
|
5 |
-
import nltk
|
6 |
-
nltk.download('punkt')
|
7 |
-
print("SCIPY")
|
8 |
-
from scipy.io.wavfile import write
|
9 |
-
print("TORCH STUFF")
|
10 |
-
import torch
|
11 |
-
print("START")
|
12 |
-
torch.manual_seed(0)
|
13 |
-
torch.backends.cudnn.benchmark = False
|
14 |
-
torch.backends.cudnn.deterministic = True
|
15 |
-
|
16 |
-
import random
|
17 |
-
random.seed(0)
|
18 |
-
|
19 |
-
import numpy as np
|
20 |
-
np.random.seed(0)
|
21 |
-
|
22 |
-
# load packages
|
23 |
-
import time
|
24 |
-
import random
|
25 |
-
import yaml
|
26 |
-
import numpy as np
|
27 |
-
import torch
|
28 |
-
import torchaudio
|
29 |
-
import librosa
|
30 |
-
from nltk.tokenize import word_tokenize
|
31 |
-
|
32 |
-
from models import *
|
33 |
-
from utils import *
|
34 |
-
from text_utils import TextCleaner
|
35 |
-
textclenaer = TextCleaner()
|
36 |
-
|
37 |
-
|
38 |
-
to_mel = torchaudio.transforms.MelSpectrogram(
|
39 |
-
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
|
40 |
-
mean, std = -4, 4
|
41 |
-
|
42 |
-
def length_to_mask(lengths):
|
43 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
44 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
45 |
-
return mask
|
46 |
-
|
47 |
-
def preprocess(wave):
|
48 |
-
wave_tensor = torch.from_numpy(wave).float()
|
49 |
-
mel_tensor = to_mel(wave_tensor)
|
50 |
-
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
|
51 |
-
return mel_tensor
|
52 |
-
|
53 |
-
def compute_style(path):
|
54 |
-
wave, sr = librosa.load(path, sr=24000)
|
55 |
-
audio, index = librosa.effects.trim(wave, top_db=30)
|
56 |
-
if sr != 24000:
|
57 |
-
audio = librosa.resample(audio, sr, 24000)
|
58 |
-
mel_tensor = preprocess(audio).to(device)
|
59 |
-
|
60 |
-
with torch.no_grad():
|
61 |
-
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
|
62 |
-
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
|
63 |
-
|
64 |
-
return torch.cat([ref_s, ref_p], dim=1)
|
65 |
-
|
66 |
-
device = 'cpu'
|
67 |
-
if torch.cuda.is_available():
|
68 |
-
device = 'cuda'
|
69 |
-
elif torch.backends.mps.is_available():
|
70 |
-
print("MPS would be available but cannot be used rn")
|
71 |
-
# device = 'mps'
|
72 |
-
|
73 |
-
|
74 |
-
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
|
75 |
-
phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
|
76 |
-
|
77 |
-
|
78 |
-
config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
|
79 |
-
|
80 |
-
# load pretrained ASR model
|
81 |
-
ASR_config = config.get('ASR_config', False)
|
82 |
-
ASR_path = config.get('ASR_path', False)
|
83 |
-
text_aligner = load_ASR_models(ASR_path, ASR_config)
|
84 |
-
|
85 |
-
# load pretrained F0 model
|
86 |
-
F0_path = config.get('F0_path', False)
|
87 |
-
pitch_extractor = load_F0_models(F0_path)
|
88 |
-
|
89 |
-
# load BERT model
|
90 |
-
from Utils.PLBERT.util import load_plbert
|
91 |
-
BERT_path = config.get('PLBERT_dir', False)
|
92 |
-
plbert = load_plbert(BERT_path)
|
93 |
-
|
94 |
-
model_params = recursive_munch(config['model_params'])
|
95 |
-
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
|
96 |
-
_ = [model[key].eval() for key in model]
|
97 |
-
_ = [model[key].to(device) for key in model]
|
98 |
-
|
99 |
-
params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
|
100 |
-
params = params_whole['net']
|
101 |
-
|
102 |
-
for key in model:
|
103 |
-
if key in params:
|
104 |
-
print('%s loaded' % key)
|
105 |
-
try:
|
106 |
-
model[key].load_state_dict(params[key])
|
107 |
-
except:
|
108 |
-
from collections import OrderedDict
|
109 |
-
state_dict = params[key]
|
110 |
-
new_state_dict = OrderedDict()
|
111 |
-
for k, v in state_dict.items():
|
112 |
-
name = k[7:] # remove `module.`
|
113 |
-
new_state_dict[name] = v
|
114 |
-
# load params
|
115 |
-
model[key].load_state_dict(new_state_dict, strict=False)
|
116 |
-
# except:
|
117 |
-
# _load(params[key], model[key])
|
118 |
-
_ = [model[key].eval() for key in model]
|
119 |
-
|
120 |
-
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
|
121 |
-
|
122 |
-
sampler = DiffusionSampler(
|
123 |
-
model.diffusion.diffusion,
|
124 |
-
sampler=ADPM2Sampler(),
|
125 |
-
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
|
126 |
-
clamp=False
|
127 |
-
)
|
128 |
-
|
129 |
-
def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1):
|
130 |
-
text = text.strip()
|
131 |
-
ps = phonemizer([text], lang='en_us')
|
132 |
-
ps = word_tokenize(ps[0])
|
133 |
-
ps = ' '.join(ps)
|
134 |
-
tokens = textclenaer(ps)
|
135 |
-
tokens.insert(0, 0)
|
136 |
-
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
|
137 |
-
|
138 |
-
with torch.no_grad():
|
139 |
-
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
140 |
-
text_mask = length_to_mask(input_lengths).to(device)
|
141 |
-
|
142 |
-
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
143 |
-
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
144 |
-
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
145 |
-
|
146 |
-
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
|
147 |
-
embedding=bert_dur,
|
148 |
-
embedding_scale=embedding_scale,
|
149 |
-
features=ref_s, # reference from the same speaker as the embedding
|
150 |
-
num_steps=diffusion_steps).squeeze(1)
|
151 |
-
|
152 |
-
|
153 |
-
s = s_pred[:, 128:]
|
154 |
-
ref = s_pred[:, :128]
|
155 |
-
|
156 |
-
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
|
157 |
-
s = beta * s + (1 - beta) * ref_s[:, 128:]
|
158 |
-
|
159 |
-
d = model.predictor.text_encoder(d_en,
|
160 |
-
s, input_lengths, text_mask)
|
161 |
-
|
162 |
-
x, _ = model.predictor.lstm(d)
|
163 |
-
duration = model.predictor.duration_proj(x)
|
164 |
-
|
165 |
-
duration = torch.sigmoid(duration).sum(axis=-1)
|
166 |
-
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
|
167 |
-
|
168 |
-
|
169 |
-
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
|
170 |
-
c_frame = 0
|
171 |
-
for i in range(pred_aln_trg.size(0)):
|
172 |
-
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
|
173 |
-
c_frame += int(pred_dur[i].data)
|
174 |
-
|
175 |
-
# encode prosody
|
176 |
-
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
|
177 |
-
if model_params.decoder.type == "hifigan":
|
178 |
-
asr_new = torch.zeros_like(en)
|
179 |
-
asr_new[:, :, 0] = en[:, :, 0]
|
180 |
-
asr_new[:, :, 1:] = en[:, :, 0:-1]
|
181 |
-
en = asr_new
|
182 |
-
|
183 |
-
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
184 |
-
|
185 |
-
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
|
186 |
-
if model_params.decoder.type == "hifigan":
|
187 |
-
asr_new = torch.zeros_like(asr)
|
188 |
-
asr_new[:, :, 0] = asr[:, :, 0]
|
189 |
-
asr_new[:, :, 1:] = asr[:, :, 0:-1]
|
190 |
-
asr = asr_new
|
191 |
-
|
192 |
-
out = model.decoder(asr,
|
193 |
-
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
|
194 |
-
|
195 |
-
|
196 |
-
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
|
197 |
-
|
198 |
-
def LFinference(text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1):
|
199 |
-
text = text.strip()
|
200 |
-
ps = phonemizer([text], lang='en_us')
|
201 |
-
ps = word_tokenize(ps[0])
|
202 |
-
ps = ' '.join(ps)
|
203 |
-
ps = ps.replace('``', '"')
|
204 |
-
ps = ps.replace("''", '"')
|
205 |
-
|
206 |
-
tokens = textclenaer(ps)
|
207 |
-
tokens.insert(0, 0)
|
208 |
-
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
|
209 |
-
|
210 |
-
with torch.no_grad():
|
211 |
-
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
212 |
-
text_mask = length_to_mask(input_lengths).to(device)
|
213 |
-
|
214 |
-
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
215 |
-
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
216 |
-
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
217 |
-
|
218 |
-
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
|
219 |
-
embedding=bert_dur,
|
220 |
-
embedding_scale=embedding_scale,
|
221 |
-
features=ref_s, # reference from the same speaker as the embedding
|
222 |
-
num_steps=diffusion_steps).squeeze(1)
|
223 |
-
|
224 |
-
if s_prev is not None:
|
225 |
-
# convex combination of previous and current style
|
226 |
-
s_pred = t * s_prev + (1 - t) * s_pred
|
227 |
-
|
228 |
-
s = s_pred[:, 128:]
|
229 |
-
ref = s_pred[:, :128]
|
230 |
-
|
231 |
-
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
|
232 |
-
s = beta * s + (1 - beta) * ref_s[:, 128:]
|
233 |
-
|
234 |
-
s_pred = torch.cat([ref, s], dim=-1)
|
235 |
-
|
236 |
-
d = model.predictor.text_encoder(d_en,
|
237 |
-
s, input_lengths, text_mask)
|
238 |
-
|
239 |
-
x, _ = model.predictor.lstm(d)
|
240 |
-
duration = model.predictor.duration_proj(x)
|
241 |
-
|
242 |
-
duration = torch.sigmoid(duration).sum(axis=-1)
|
243 |
-
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
|
244 |
-
|
245 |
-
|
246 |
-
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
|
247 |
-
c_frame = 0
|
248 |
-
for i in range(pred_aln_trg.size(0)):
|
249 |
-
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
|
250 |
-
c_frame += int(pred_dur[i].data)
|
251 |
-
|
252 |
-
# encode prosody
|
253 |
-
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
|
254 |
-
if model_params.decoder.type == "hifigan":
|
255 |
-
asr_new = torch.zeros_like(en)
|
256 |
-
asr_new[:, :, 0] = en[:, :, 0]
|
257 |
-
asr_new[:, :, 1:] = en[:, :, 0:-1]
|
258 |
-
en = asr_new
|
259 |
-
|
260 |
-
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
261 |
-
|
262 |
-
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
|
263 |
-
if model_params.decoder.type == "hifigan":
|
264 |
-
asr_new = torch.zeros_like(asr)
|
265 |
-
asr_new[:, :, 0] = asr[:, :, 0]
|
266 |
-
asr_new[:, :, 1:] = asr[:, :, 0:-1]
|
267 |
-
asr = asr_new
|
268 |
-
|
269 |
-
out = model.decoder(asr,
|
270 |
-
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
|
271 |
-
|
272 |
-
|
273 |
-
return out.squeeze().cpu().numpy()[..., :-100], s_pred # weird pulse at the end of the model, need to be fixed later
|
274 |
-
|
275 |
-
def STinference(text, ref_s, ref_text, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1):
|
276 |
-
text = text.strip()
|
277 |
-
ps = phonemizer([text], lang='en_us')
|
278 |
-
ps = word_tokenize(ps[0])
|
279 |
-
ps = ' '.join(ps)
|
280 |
-
|
281 |
-
tokens = textclenaer(ps)
|
282 |
-
tokens.insert(0, 0)
|
283 |
-
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
|
284 |
-
|
285 |
-
ref_text = ref_text.strip()
|
286 |
-
ps = phonemizer([ref_text], lang='en_us')
|
287 |
-
ps = word_tokenize(ps[0])
|
288 |
-
ps = ' '.join(ps)
|
289 |
-
|
290 |
-
ref_tokens = textclenaer(ps)
|
291 |
-
ref_tokens.insert(0, 0)
|
292 |
-
ref_tokens = torch.LongTensor(ref_tokens).to(device).unsqueeze(0)
|
293 |
-
|
294 |
-
|
295 |
-
with torch.no_grad():
|
296 |
-
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
297 |
-
text_mask = length_to_mask(input_lengths).to(device)
|
298 |
-
|
299 |
-
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
300 |
-
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
301 |
-
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
302 |
-
|
303 |
-
ref_input_lengths = torch.LongTensor([ref_tokens.shape[-1]]).to(device)
|
304 |
-
ref_text_mask = length_to_mask(ref_input_lengths).to(device)
|
305 |
-
model.bert(ref_tokens, attention_mask=(~ref_text_mask).int())
|
306 |
-
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
|
307 |
-
embedding=bert_dur,
|
308 |
-
embedding_scale=embedding_scale,
|
309 |
-
features=ref_s, # reference from the same speaker as the embedding
|
310 |
-
num_steps=diffusion_steps).squeeze(1)
|
311 |
-
|
312 |
-
|
313 |
-
s = s_pred[:, 128:]
|
314 |
-
ref = s_pred[:, :128]
|
315 |
-
|
316 |
-
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
|
317 |
-
s = beta * s + (1 - beta) * ref_s[:, 128:]
|
318 |
-
|
319 |
-
d = model.predictor.text_encoder(d_en,
|
320 |
-
s, input_lengths, text_mask)
|
321 |
-
|
322 |
-
x, _ = model.predictor.lstm(d)
|
323 |
-
duration = model.predictor.duration_proj(x)
|
324 |
-
|
325 |
-
duration = torch.sigmoid(duration).sum(axis=-1)
|
326 |
-
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
|
327 |
-
|
328 |
-
|
329 |
-
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
|
330 |
-
c_frame = 0
|
331 |
-
for i in range(pred_aln_trg.size(0)):
|
332 |
-
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
|
333 |
-
c_frame += int(pred_dur[i].data)
|
334 |
-
|
335 |
-
# encode prosody
|
336 |
-
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
|
337 |
-
if model_params.decoder.type == "hifigan":
|
338 |
-
asr_new = torch.zeros_like(en)
|
339 |
-
asr_new[:, :, 0] = en[:, :, 0]
|
340 |
-
asr_new[:, :, 1:] = en[:, :, 0:-1]
|
341 |
-
en = asr_new
|
342 |
-
|
343 |
-
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
344 |
-
|
345 |
-
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
|
346 |
-
if model_params.decoder.type == "hifigan":
|
347 |
-
asr_new = torch.zeros_like(asr)
|
348 |
-
asr_new[:, :, 0] = asr[:, :, 0]
|
349 |
-
asr_new[:, :, 1:] = asr[:, :, 0:-1]
|
350 |
-
asr = asr_new
|
351 |
-
|
352 |
-
out = model.decoder(asr,
|
353 |
-
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
|
354 |
-
|
355 |
-
|
356 |
-
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
|
357 |
-
print("Time to synthesize!")
|
358 |
-
ref_s = compute_style('./voice/voice.wav')
|
359 |
-
while True:
|
360 |
-
text = input("What to say? > ")
|
361 |
-
start = time.time()
|
362 |
-
wav = inference(text, ref_s, alpha=0.3, beta=0.7, diffusion_steps=15, embedding_scale=1)
|
363 |
-
rtf = (time.time() - start) / (len(wav) / 24000)
|
364 |
-
print(f"RTF = {rtf:5f}")
|
365 |
-
print(k + ' Synthesized:')
|
366 |
-
# display(ipd.Audio(wav, rate=24000, normalize=False))
|
367 |
-
write('result.wav', 24000, wav)
|
368 |
-
print("Saved to result.wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
compute.py
DELETED
@@ -1,132 +0,0 @@
|
|
1 |
-
from cached_path import cached_path
|
2 |
-
|
3 |
-
# from dp.phonemizer import Phonemizer
|
4 |
-
print("NLTK")
|
5 |
-
import nltk
|
6 |
-
nltk.download('punkt')
|
7 |
-
print("SCIPY")
|
8 |
-
print("TORCH STUFF")
|
9 |
-
import torch
|
10 |
-
print("START")
|
11 |
-
torch.manual_seed(0)
|
12 |
-
torch.backends.cudnn.benchmark = False
|
13 |
-
torch.backends.cudnn.deterministic = True
|
14 |
-
|
15 |
-
import random
|
16 |
-
random.seed(0)
|
17 |
-
|
18 |
-
import numpy as np
|
19 |
-
np.random.seed(0)
|
20 |
-
|
21 |
-
# load packages
|
22 |
-
import random
|
23 |
-
import yaml
|
24 |
-
import numpy as np
|
25 |
-
import torch
|
26 |
-
import torchaudio
|
27 |
-
import librosa
|
28 |
-
|
29 |
-
from models import *
|
30 |
-
from utils import *
|
31 |
-
from text_utils import TextCleaner
|
32 |
-
textclenaer = TextCleaner()
|
33 |
-
|
34 |
-
|
35 |
-
to_mel = torchaudio.transforms.MelSpectrogram(
|
36 |
-
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
|
37 |
-
mean, std = -4, 4
|
38 |
-
|
39 |
-
def length_to_mask(lengths):
|
40 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
41 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
42 |
-
return mask
|
43 |
-
|
44 |
-
def preprocess(wave):
|
45 |
-
wave_tensor = torch.from_numpy(wave).float()
|
46 |
-
mel_tensor = to_mel(wave_tensor)
|
47 |
-
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
|
48 |
-
return mel_tensor
|
49 |
-
|
50 |
-
def compute_style(path):
|
51 |
-
wave, sr = librosa.load(path, sr=24000)
|
52 |
-
audio, index = librosa.effects.trim(wave, top_db=30)
|
53 |
-
if sr != 24000:
|
54 |
-
audio = librosa.resample(audio, sr, 24000)
|
55 |
-
mel_tensor = preprocess(audio).to(device)
|
56 |
-
|
57 |
-
with torch.no_grad():
|
58 |
-
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
|
59 |
-
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
|
60 |
-
|
61 |
-
return torch.cat([ref_s, ref_p], dim=1)
|
62 |
-
|
63 |
-
device = 'cpu'
|
64 |
-
if torch.cuda.is_available():
|
65 |
-
device = 'cuda'
|
66 |
-
elif torch.backends.mps.is_available():
|
67 |
-
print("MPS would be available but cannot be used rn")
|
68 |
-
# device = 'mps'
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
|
73 |
-
config = yaml.safe_load(open(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/config.yml"))))
|
74 |
-
|
75 |
-
# load pretrained ASR model
|
76 |
-
ASR_config = config.get('ASR_config', False)
|
77 |
-
ASR_path = config.get('ASR_path', False)
|
78 |
-
text_aligner = load_ASR_models(ASR_path, ASR_config)
|
79 |
-
|
80 |
-
# load pretrained F0 model
|
81 |
-
F0_path = config.get('F0_path', False)
|
82 |
-
pitch_extractor = load_F0_models(F0_path)
|
83 |
-
|
84 |
-
# load BERT model
|
85 |
-
from Utils.PLBERT.util import load_plbert
|
86 |
-
BERT_path = config.get('PLBERT_dir', False)
|
87 |
-
plbert = load_plbert(BERT_path)
|
88 |
-
|
89 |
-
model_params = recursive_munch(config['model_params'])
|
90 |
-
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
|
91 |
-
_ = [model[key].eval() for key in model]
|
92 |
-
_ = [model[key].to(device) for key in model]
|
93 |
-
|
94 |
-
# params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
|
95 |
-
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu')
|
96 |
-
params = params_whole['net']
|
97 |
-
|
98 |
-
for key in model:
|
99 |
-
if key in params:
|
100 |
-
print('%s loaded' % key)
|
101 |
-
try:
|
102 |
-
model[key].load_state_dict(params[key])
|
103 |
-
except:
|
104 |
-
from collections import OrderedDict
|
105 |
-
state_dict = params[key]
|
106 |
-
new_state_dict = OrderedDict()
|
107 |
-
for k, v in state_dict.items():
|
108 |
-
name = k[7:] # remove `module.`
|
109 |
-
new_state_dict[name] = v
|
110 |
-
# load params
|
111 |
-
model[key].load_state_dict(new_state_dict, strict=False)
|
112 |
-
# except:
|
113 |
-
# _load(params[key], model[key])
|
114 |
-
_ = [model[key].eval() for key in model]
|
115 |
-
|
116 |
-
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
|
117 |
-
|
118 |
-
sampler = DiffusionSampler(
|
119 |
-
model.diffusion.diffusion,
|
120 |
-
sampler=ADPM2Sampler(),
|
121 |
-
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
|
122 |
-
clamp=False
|
123 |
-
)
|
124 |
-
voicelist = ['f-us-1', 'f-us-2', 'f-us-3', 'f-us-4', 'm-us-1', 'm-us-2', 'm-us-3', 'm-us-4']
|
125 |
-
voices = {}
|
126 |
-
# todo: cache computed style, load using pickle
|
127 |
-
for v in voicelist:
|
128 |
-
print(f"Loading voice {v}")
|
129 |
-
voices[v] = compute_style(f'voices/{v}.wav')
|
130 |
-
import pickle
|
131 |
-
with open('voices.pkl', 'wb') as f:
|
132 |
-
pickle.dump(voices, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
styletts2importable.py
CHANGED
@@ -189,11 +189,7 @@ _ = [model[key].to(device) for key in model]
|
|
189 |
|
190 |
|
191 |
params_whole = torch.load(
|
192 |
-
str(
|
193 |
-
cached_path(
|
194 |
-
"hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth"
|
195 |
-
)
|
196 |
-
),
|
197 |
map_location="cpu",
|
198 |
)
|
199 |
params = params_whole["net"]
|
|
|
189 |
|
190 |
|
191 |
params_whole = torch.load(
|
192 |
+
str(cached_path("https://base-weights.weights.gg/epochs_2nd_00020.pth")),
|
|
|
|
|
|
|
|
|
193 |
map_location="cpu",
|
194 |
)
|
195 |
params = params_whole["net"]
|