root commited on
Commit
10ba879
1 Parent(s): 2e4018d

initial commit of

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LICENSE +21 -0
  2. app.py +215 -0
  3. assets/.gitignore +2 -0
  4. assets/gradio_description_animation.md +16 -0
  5. assets/gradio_description_retargeting.md +4 -0
  6. assets/gradio_description_upload.md +2 -0
  7. assets/gradio_title.md +11 -0
  8. inference.py +58 -0
  9. pretrained_weights/.gitkeep +0 -0
  10. readme.md +206 -0
  11. requirements.txt +22 -0
  12. speed.py +195 -0
  13. src/config/__init__.py +0 -0
  14. src/config/argument_config.py +48 -0
  15. src/config/base_config.py +29 -0
  16. src/config/crop_config.py +29 -0
  17. src/config/inference_config.py +52 -0
  18. src/config/models.yaml +43 -0
  19. src/gradio_pipeline.py +117 -0
  20. src/live_portrait_pipeline.py +285 -0
  21. src/live_portrait_wrapper.py +319 -0
  22. src/modules/__init__.py +0 -0
  23. src/modules/appearance_feature_extractor.py +48 -0
  24. src/modules/convnextv2.py +149 -0
  25. src/modules/dense_motion.py +104 -0
  26. src/modules/motion_extractor.py +35 -0
  27. src/modules/spade_generator.py +59 -0
  28. src/modules/stitching_retargeting_network.py +38 -0
  29. src/modules/util.py +441 -0
  30. src/modules/warping_network.py +77 -0
  31. src/utils/__init__.py +0 -0
  32. src/utils/camera.py +73 -0
  33. src/utils/crop.py +398 -0
  34. src/utils/cropper.py +196 -0
  35. src/utils/dependencies/insightface/__init__.py +20 -0
  36. src/utils/dependencies/insightface/app/__init__.py +1 -0
  37. src/utils/dependencies/insightface/app/common.py +49 -0
  38. src/utils/dependencies/insightface/app/face_analysis.py +110 -0
  39. src/utils/dependencies/insightface/data/__init__.py +2 -0
  40. src/utils/dependencies/insightface/data/image.py +27 -0
  41. src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png +0 -0
  42. src/utils/dependencies/insightface/data/images/mask_black.jpg +0 -0
  43. src/utils/dependencies/insightface/data/images/mask_blue.jpg +0 -0
  44. src/utils/dependencies/insightface/data/images/mask_green.jpg +0 -0
  45. src/utils/dependencies/insightface/data/images/mask_white.jpg +0 -0
  46. src/utils/dependencies/insightface/data/images/t1.jpg +0 -0
  47. src/utils/dependencies/insightface/data/objects/meanshape_68.pkl +3 -0
  48. src/utils/dependencies/insightface/data/pickle_object.py +17 -0
  49. src/utils/dependencies/insightface/data/rec_builder.py +71 -0
  50. src/utils/dependencies/insightface/model_zoo/__init__.py +6 -0
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Kuaishou Visual Generation and Interaction Center
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
app.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ The entrance of the gradio
5
+ """
6
+
7
+ import tyro
8
+ import subprocess
9
+ import gradio as gr
10
+ import os.path as osp
11
+ from src.utils.helper import load_description
12
+ from src.gradio_pipeline import GradioPipeline
13
+ from src.config.crop_config import CropConfig
14
+ from src.config.argument_config import ArgumentConfig
15
+ from src.config.inference_config import InferenceConfig
16
+
17
+
18
+ def partial_fields(target_class, kwargs):
19
+ return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
20
+
21
+
22
+ def fast_check_ffmpeg():
23
+ try:
24
+ subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
25
+ return True
26
+ except:
27
+ return False
28
+
29
+ # set tyro theme
30
+ tyro.extras.set_accent_color("bright_cyan")
31
+ args = tyro.cli(ArgumentConfig)
32
+
33
+ if not fast_check_ffmpeg():
34
+ raise ImportError(
35
+ "FFmpeg is not installed. Please install FFmpeg before running this script. https://ffmpeg.org/download.html"
36
+ )
37
+
38
+ # specify configs for inference
39
+ inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
40
+ crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
41
+
42
+ gradio_pipeline = GradioPipeline(
43
+ inference_cfg=inference_cfg,
44
+ crop_cfg=crop_cfg,
45
+ args=args
46
+ )
47
+
48
+
49
+ def gpu_wrapped_execute_video(*args, **kwargs):
50
+ return gradio_pipeline.execute_video(*args, **kwargs)
51
+
52
+
53
+ def gpu_wrapped_execute_image(*args, **kwargs):
54
+ return gradio_pipeline.execute_image(*args, **kwargs)
55
+
56
+
57
+ # assets
58
+ title_md = "assets/gradio_title.md"
59
+ example_portrait_dir = "assets/examples/source"
60
+ example_video_dir = "assets/examples/driving"
61
+ data_examples = [
62
+ [osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
63
+ [osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
64
+ [osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
65
+ [osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, False],
66
+ [osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, False],
67
+ [osp.join(example_portrait_dir, "s2.jpg"), osp.join(example_video_dir, "d13.mp4"), True, True, True, True],
68
+ ]
69
+ #################### interface logic ####################
70
+
71
+ # Define components first
72
+ eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
73
+ lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
74
+ retargeting_input_image = gr.Image(type="filepath")
75
+ output_image = gr.Image(type="numpy")
76
+ output_image_paste_back = gr.Image(type="numpy")
77
+ output_video = gr.Video()
78
+ output_video_concat = gr.Video()
79
+
80
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
81
+ gr.HTML(load_description(title_md))
82
+ gr.Markdown(load_description("assets/gradio_description_upload.md"))
83
+ with gr.Row():
84
+ with gr.Accordion(open=True, label="Source Portrait"):
85
+ image_input = gr.Image(type="filepath")
86
+ gr.Examples(
87
+ examples=[
88
+ [osp.join(example_portrait_dir, "s9.jpg")],
89
+ [osp.join(example_portrait_dir, "s6.jpg")],
90
+ [osp.join(example_portrait_dir, "s10.jpg")],
91
+ [osp.join(example_portrait_dir, "s5.jpg")],
92
+ [osp.join(example_portrait_dir, "s7.jpg")],
93
+ [osp.join(example_portrait_dir, "s12.jpg")],
94
+ ],
95
+ inputs=[image_input],
96
+ cache_examples=False,
97
+ )
98
+ with gr.Accordion(open=True, label="Driving Video"):
99
+ video_input = gr.Video()
100
+ gr.Examples(
101
+ examples=[
102
+ [osp.join(example_video_dir, "d0.mp4")],
103
+ [osp.join(example_video_dir, "d18.mp4")],
104
+ [osp.join(example_video_dir, "d19.mp4")],
105
+ [osp.join(example_video_dir, "d14.mp4")],
106
+ [osp.join(example_video_dir, "d6.mp4")],
107
+ ],
108
+ inputs=[video_input],
109
+ cache_examples=False,
110
+ )
111
+ with gr.Row():
112
+ with gr.Accordion(open=False, label="Animation Instructions and Options"):
113
+ gr.Markdown(load_description("assets/gradio_description_animation.md"))
114
+ with gr.Row():
115
+ flag_relative_input = gr.Checkbox(value=True, label="relative motion")
116
+ flag_do_crop_input = gr.Checkbox(value=True, label="do crop (source)")
117
+ flag_remap_input = gr.Checkbox(value=True, label="paste-back")
118
+ flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving video)")
119
+ with gr.Row():
120
+ with gr.Column():
121
+ process_button_animation = gr.Button("🚀 Animate", variant="primary")
122
+ with gr.Column():
123
+ process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="🧹 Clear")
124
+ with gr.Row():
125
+ with gr.Column():
126
+ with gr.Accordion(open=True, label="The animated video in the original image space"):
127
+ output_video.render()
128
+ with gr.Column():
129
+ with gr.Accordion(open=True, label="The animated video"):
130
+ output_video_concat.render()
131
+ with gr.Row():
132
+ # Examples
133
+ gr.Markdown("## You could also choose the examples below by one click ⬇️")
134
+ with gr.Row():
135
+ gr.Examples(
136
+ examples=data_examples,
137
+ fn=gpu_wrapped_execute_video,
138
+ inputs=[
139
+ image_input,
140
+ video_input,
141
+ flag_relative_input,
142
+ flag_do_crop_input,
143
+ flag_remap_input,
144
+ flag_crop_driving_video_input
145
+ ],
146
+ outputs=[output_image, output_image_paste_back],
147
+ examples_per_page=len(data_examples),
148
+ cache_examples=False,
149
+ )
150
+ gr.Markdown(load_description("assets/gradio_description_retargeting.md"), visible=True)
151
+ with gr.Row(visible=True):
152
+ eye_retargeting_slider.render()
153
+ lip_retargeting_slider.render()
154
+ with gr.Row(visible=True):
155
+ process_button_retargeting = gr.Button("🚗 Retargeting", variant="primary")
156
+ process_button_reset_retargeting = gr.ClearButton(
157
+ [
158
+ eye_retargeting_slider,
159
+ lip_retargeting_slider,
160
+ retargeting_input_image,
161
+ output_image,
162
+ output_image_paste_back
163
+ ],
164
+ value="🧹 Clear"
165
+ )
166
+ with gr.Row(visible=True):
167
+ with gr.Column():
168
+ with gr.Accordion(open=True, label="Retargeting Input"):
169
+ retargeting_input_image.render()
170
+ gr.Examples(
171
+ examples=[
172
+ [osp.join(example_portrait_dir, "s9.jpg")],
173
+ [osp.join(example_portrait_dir, "s6.jpg")],
174
+ [osp.join(example_portrait_dir, "s10.jpg")],
175
+ [osp.join(example_portrait_dir, "s5.jpg")],
176
+ [osp.join(example_portrait_dir, "s7.jpg")],
177
+ [osp.join(example_portrait_dir, "s12.jpg")],
178
+ ],
179
+ inputs=[retargeting_input_image],
180
+ cache_examples=False,
181
+ )
182
+ with gr.Column():
183
+ with gr.Accordion(open=True, label="Retargeting Result"):
184
+ output_image.render()
185
+ with gr.Column():
186
+ with gr.Accordion(open=True, label="Paste-back Result"):
187
+ output_image_paste_back.render()
188
+ # binding functions for buttons
189
+ process_button_retargeting.click(
190
+ # fn=gradio_pipeline.execute_image,
191
+ fn=gpu_wrapped_execute_image,
192
+ inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input],
193
+ outputs=[output_image, output_image_paste_back],
194
+ show_progress=True
195
+ )
196
+ process_button_animation.click(
197
+ fn=gpu_wrapped_execute_video,
198
+ inputs=[
199
+ image_input,
200
+ video_input,
201
+ flag_relative_input,
202
+ flag_do_crop_input,
203
+ flag_remap_input,
204
+ flag_crop_driving_video_input
205
+ ],
206
+ outputs=[output_video, output_video_concat],
207
+ show_progress=True
208
+ )
209
+
210
+
211
+ demo.launch(
212
+ server_port=args.server_port,
213
+ share=args.share,
214
+ server_name=args.server_name
215
+ )
assets/.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ examples/driving/*.pkl
2
+ examples/driving/*_crop.mp4
assets/gradio_description_animation.md ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <span style="font-size: 1.2em;">🔥 To animate the source portrait with the driving video, please follow these steps:</span>
2
+ <div style="font-size: 1.2em; margin-left: 20px;">
3
+ 1. In the <strong>Animation Options</strong> section, we recommend enabling the <strong>do crop (source)</strong> option if faces occupy a small portion of your image.
4
+ </div>
5
+ <div style="font-size: 1.2em; margin-left: 20px;">
6
+ 2. Press the <strong>🚀 Animate</strong> button and wait for a moment. Your animated video will appear in the result block. This may take a few moments.
7
+ </div>
8
+ <div style="font-size: 1.2em; margin-left: 20px;">
9
+ 3. If you want to upload your own driving video, <strong>the best practice</strong>:
10
+
11
+ - Crop it to a 1:1 aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-driving by checking `do crop (driving video)`.
12
+ - Focus on the head area, similar to the example videos.
13
+ - Minimize shoulder movement.
14
+ - Make sure the first frame of driving video is a frontal face with **neutral expression**.
15
+
16
+ </div>
assets/gradio_description_retargeting.md ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ <br>
2
+
3
+ ## Retargeting
4
+ <span style="font-size: 1.2em;">🔥 To edit the eyes and lip open ratio of the source portrait, drag the sliders and click the <strong>🚗 Retargeting</strong> button. You can try running it multiple times. <strong>😊 Set both ratios to 0.8 to see what's going on!</strong> </span>
assets/gradio_description_upload.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ## 🤗 This is the official gradio demo for **LivePortrait**.
2
+ <div style="font-size: 1.2em;">Please upload or use a webcam to get a <strong>Source Portrait</strong> (any aspect ratio) and upload a <strong>Driving Video</strong> (1:1 aspect ratio, or any aspect ratio with <code>do crop (driving video)</code> checked).</div>
assets/gradio_title.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
2
+ <div>
3
+ <h1>LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1>
4
+ <div style="display: flex; justify-content: center; align-items: center; text-align: center;>
5
+ <a href="https://arxiv.org/pdf/2407.03168"><img src="https://img.shields.io/badge/arXiv-2407.03168-red"></a>
6
+ <a href="https://liveportrait.github.io"><img src="https://img.shields.io/badge/Project_Page-LivePortrait-green" alt="Project Page"></a>
7
+ <a href="https://github.com/KwaiVGI/LivePortrait"><img src="https://img.shields.io/badge/Github-Code-blue"></a>
8
+ <a href='https://huggingface.co/spaces/KwaiVGI/liveportrait'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
9
+ </div>
10
+ </div>
11
+ </div>
inference.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ import os.path as osp
4
+ import tyro
5
+ import subprocess
6
+ from src.config.argument_config import ArgumentConfig
7
+ from src.config.inference_config import InferenceConfig
8
+ from src.config.crop_config import CropConfig
9
+ from src.live_portrait_pipeline import LivePortraitPipeline
10
+
11
+
12
+ def partial_fields(target_class, kwargs):
13
+ return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
14
+
15
+
16
+ def fast_check_ffmpeg():
17
+ try:
18
+ subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
19
+ return True
20
+ except:
21
+ return False
22
+
23
+
24
+ def fast_check_args(args: ArgumentConfig):
25
+ if not osp.exists(args.source_image):
26
+ raise FileNotFoundError(f"source image not found: {args.source_image}")
27
+ if not osp.exists(args.driving_info):
28
+ raise FileNotFoundError(f"driving info not found: {args.driving_info}")
29
+
30
+
31
+ def main():
32
+ # set tyro theme
33
+ tyro.extras.set_accent_color("bright_cyan")
34
+ args = tyro.cli(ArgumentConfig)
35
+
36
+ if not fast_check_ffmpeg():
37
+ raise ImportError(
38
+ "FFmpeg is not installed. Please install FFmpeg before running this script. https://ffmpeg.org/download.html"
39
+ )
40
+
41
+ # fast check the args
42
+ fast_check_args(args)
43
+
44
+ # specify configs for inference
45
+ inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
46
+ crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
47
+
48
+ live_portrait_pipeline = LivePortraitPipeline(
49
+ inference_cfg=inference_cfg,
50
+ crop_cfg=crop_cfg
51
+ )
52
+
53
+ # run
54
+ live_portrait_pipeline.execute(args)
55
+
56
+
57
+ if __name__ == "__main__":
58
+ main()
pretrained_weights/.gitkeep ADDED
File without changes
readme.md ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1>
2
+
3
+ <div align='center'>
4
+ <a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1†</sup>&emsp;
5
+ <a href='https://github.com/KwaiVGI' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup>&emsp;
6
+ <a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup>&emsp;
7
+ <a href='https://scholar.google.com/citations?user=t88nyvsAAAAJ&hl' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup>&emsp;
8
+ <a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup>&emsp;
9
+ </div>
10
+
11
+ <div align='center'>
12
+ <a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup>&emsp;
13
+ <a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup>&emsp;
14
+ </div>
15
+
16
+ <div align='center'>
17
+ <sup>1 </sup>Kuaishou Technology&emsp; <sup>2 </sup>University of Science and Technology of China&emsp; <sup>3 </sup>Fudan University&emsp;
18
+ </div>
19
+
20
+ <br>
21
+ <div align="center">
22
+ <!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
23
+ <a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a>
24
+ <a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a>
25
+ <a href='https://huggingface.co/spaces/KwaiVGI/liveportrait'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
26
+ </div>
27
+ <br>
28
+
29
+ <p align="center">
30
+ <img src="./assets/docs/showcase2.gif" alt="showcase">
31
+ <br>
32
+ 🔥 For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> 🔥
33
+ </p>
34
+
35
+
36
+
37
+ ## 🔥 Updates
38
+ - **`2024/07/10`**: 💪 We support audio and video concatenating, driving video auto-cropping, and template making to protect privacy. More to see [here](assets/docs/changelog/2024-07-10.md).
39
+ - **`2024/07/09`**: 🤗 We released the [HuggingFace Space](https://huggingface.co/spaces/KwaiVGI/liveportrait), thanks to the HF team and [Gradio](https://github.com/gradio-app/gradio)!
40
+ - **`2024/07/04`**: 😊 We released the initial version of the inference code and models. Continuous updates, stay tuned!
41
+ - **`2024/07/04`**: 🔥 We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168).
42
+
43
+
44
+
45
+ ## Introduction
46
+ This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
47
+ We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) 💖.
48
+
49
+ ## 🔥 Getting Started
50
+ ### 1. Clone the code and prepare the environment
51
+ ```bash
52
+ git clone https://github.com/KwaiVGI/LivePortrait
53
+ cd LivePortrait
54
+
55
+ # create env using conda
56
+ conda create -n LivePortrait python==3.9.18
57
+ conda activate LivePortrait
58
+ # install dependencies with pip
59
+ pip install -r requirements.txt
60
+ ```
61
+
62
+ **Note:** make sure your system has [FFmpeg](https://ffmpeg.org/) installed!
63
+
64
+ ### 2. Download pretrained weights
65
+
66
+ The easiest way to download the pretrained weights is from HuggingFace:
67
+ ```bash
68
+ # first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
69
+ git lfs install
70
+ # clone the weights
71
+ git clone https://huggingface.co/KwaiVGI/liveportrait pretrained_weights
72
+ ```
73
+
74
+ Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). Unzip and place them in `./pretrained_weights`.
75
+
76
+ Ensuring the directory structure is as follows, or contains:
77
+ ```text
78
+ pretrained_weights
79
+ ├── insightface
80
+ │ └── models
81
+ │ └── buffalo_l
82
+ │ ├── 2d106det.onnx
83
+ │ └── det_10g.onnx
84
+ └── liveportrait
85
+ ├── base_models
86
+ │ ├── appearance_feature_extractor.pth
87
+ │ ├── motion_extractor.pth
88
+ │ ├── spade_generator.pth
89
+ │ └── warping_module.pth
90
+ ├── landmark.onnx
91
+ └── retargeting_models
92
+ └── stitching_retargeting_module.pth
93
+ ```
94
+
95
+ ### 3. Inference 🚀
96
+
97
+ #### Fast hands-on
98
+ ```bash
99
+ python inference.py
100
+ ```
101
+
102
+ If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.
103
+
104
+ <p align="center">
105
+ <img src="./assets/docs/inference.gif" alt="image">
106
+ </p>
107
+
108
+ Or, you can change the input by specifying the `-s` and `-d` arguments:
109
+
110
+ ```bash
111
+ python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4
112
+
113
+ # disable pasting back to run faster
114
+ python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback
115
+
116
+ # more options to see
117
+ python inference.py -h
118
+ ```
119
+
120
+ #### Driving video auto-cropping
121
+
122
+ 📕 To use your own driving video, we **recommend**:
123
+ - Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
124
+ - Focus on the head area, similar to the example videos.
125
+ - Minimize shoulder movement.
126
+ - Make sure the first frame of driving video is a frontal face with **neutral expression**.
127
+
128
+ Below is a auto-cropping case by `--flag_crop_driving_video`:
129
+ ```bash
130
+ python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video
131
+ ```
132
+
133
+ If you find the results of auto-cropping is not well, you can modify the `--scale_crop_video`, `--vy_ratio_crop_video` options to adjust the scale and offset, or do it manually.
134
+
135
+ #### Motion template making
136
+ You can also use the auto-generated motion template files ending with `.pkl` to speed up inference, and **protect privacy**, such as:
137
+ ```bash
138
+ python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl
139
+ ```
140
+
141
+ **Discover more interesting results on our [Homepage](https://liveportrait.github.io)** 😊
142
+
143
+ ### 4. Gradio interface 🤗
144
+
145
+ We also provide a Gradio <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a> interface for a better experience, just run by:
146
+
147
+ ```bash
148
+ python app.py
149
+ ```
150
+
151
+ You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!
152
+
153
+ 🚀 We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions.
154
+ ```bash
155
+ # enable torch.compile for faster inference
156
+ python app.py --flag_do_torch_compile
157
+ ```
158
+ **Note**: This method has not been fully tested. e.g., on Windows.
159
+
160
+ **Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) 🤗**
161
+
162
+ ### 5. Inference speed evaluation 🚀🚀🚀
163
+ We have also provided a script to evaluate the inference speed of each module:
164
+
165
+ ```bash
166
+ python speed.py
167
+ ```
168
+
169
+ Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:
170
+
171
+ | Model | Parameters(M) | Model Size(MB) | Inference(ms) |
172
+ |-----------------------------------|:-------------:|:--------------:|:-------------:|
173
+ | Appearance Feature Extractor | 0.84 | 3.3 | 0.82 |
174
+ | Motion Extractor | 28.12 | 108 | 0.84 |
175
+ | Spade Generator | 55.37 | 212 | 7.59 |
176
+ | Warping Module | 45.53 | 174 | 5.21 |
177
+ | Stitching and Retargeting Modules | 0.23 | 2.3 | 0.31 |
178
+
179
+ *Note: The values for the Stitching and Retargeting Modules represent the combined parameter counts and total inference time of three sequential MLP networks.*
180
+
181
+ ## Community Resources 🤗
182
+
183
+ Discover the invaluable resources contributed by our community to enhance your LivePortrait experience:
184
+
185
+ - [ComfyUI-LivePortraitKJ](https://github.com/kijai/ComfyUI-LivePortraitKJ) by [@kijai](https://github.com/kijai)
186
+ - [comfyui-liveportrait](https://github.com/shadowcz007/comfyui-liveportrait) by [@shadowcz007](https://github.com/shadowcz007)
187
+ - [LivePortrait hands-on tutorial](https://www.youtube.com/watch?v=uyjSTAOY7yI) by [@AI Search](https://www.youtube.com/@theAIsearch)
188
+ - [ComfyUI tutorial](https://www.youtube.com/watch?v=8-IcDDmiUMM) by [@Sebastian Kamph](https://www.youtube.com/@sebastiankamph)
189
+ - [LivePortrait In ComfyUI](https://www.youtube.com/watch?v=aFcS31OWMjE) by [@Benji](https://www.youtube.com/@TheFutureThinker)
190
+ - [Replicate Playground](https://replicate.com/fofr/live-portrait) and [cog-comfyui](https://github.com/fofr/cog-comfyui) by [@fofr](https://github.com/fofr)
191
+
192
+ And many more amazing contributions from our community!
193
+
194
+ ## Acknowledgements
195
+ We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.
196
+
197
+ ## Citation 💖
198
+ If you find LivePortrait useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX:
199
+ ```bibtex
200
+ @article{guo2024liveportrait,
201
+ title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control},
202
+ author = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di},
203
+ journal = {arXiv preprint arXiv:2407.03168},
204
+ year = {2024}
205
+ }
206
+ ```
requirements.txt ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu118
2
+ torch==2.3.0
3
+ torchvision==0.18.0
4
+ torchaudio==2.3.0
5
+
6
+ numpy==1.26.4
7
+ pyyaml==6.0.1
8
+ opencv-python==4.10.0.84
9
+ scipy==1.13.1
10
+ imageio==2.34.2
11
+ lmdb==1.4.1
12
+ tqdm==4.66.4
13
+ rich==13.7.1
14
+ ffmpeg-python==0.2.0
15
+ onnxruntime-gpu==1.18.0
16
+ onnx==1.16.1
17
+ scikit-image==0.24.0
18
+ albumentations==1.4.10
19
+ matplotlib==3.9.0
20
+ imageio-ffmpeg==0.5.1
21
+ tyro==0.8.5
22
+ gradio==4.37.1
speed.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Benchmark the inference speed of each module in LivePortrait.
5
+
6
+ TODO: heavy GPT style, need to refactor
7
+ """
8
+
9
+ import torch
10
+ torch._dynamo.config.suppress_errors = True # Suppress errors and fall back to eager execution
11
+
12
+ import yaml
13
+ import time
14
+ import numpy as np
15
+
16
+ from src.utils.helper import load_model, concat_feat
17
+ from src.config.inference_config import InferenceConfig
18
+
19
+
20
+ def initialize_inputs(batch_size=1, device_id=0):
21
+ """
22
+ Generate random input tensors and move them to GPU
23
+ """
24
+ feature_3d = torch.randn(batch_size, 32, 16, 64, 64).to(device_id).half()
25
+ kp_source = torch.randn(batch_size, 21, 3).to(device_id).half()
26
+ kp_driving = torch.randn(batch_size, 21, 3).to(device_id).half()
27
+ source_image = torch.randn(batch_size, 3, 256, 256).to(device_id).half()
28
+ generator_input = torch.randn(batch_size, 256, 64, 64).to(device_id).half()
29
+ eye_close_ratio = torch.randn(batch_size, 3).to(device_id).half()
30
+ lip_close_ratio = torch.randn(batch_size, 2).to(device_id).half()
31
+ feat_stitching = concat_feat(kp_source, kp_driving).half()
32
+ feat_eye = concat_feat(kp_source, eye_close_ratio).half()
33
+ feat_lip = concat_feat(kp_source, lip_close_ratio).half()
34
+
35
+ inputs = {
36
+ 'feature_3d': feature_3d,
37
+ 'kp_source': kp_source,
38
+ 'kp_driving': kp_driving,
39
+ 'source_image': source_image,
40
+ 'generator_input': generator_input,
41
+ 'feat_stitching': feat_stitching,
42
+ 'feat_eye': feat_eye,
43
+ 'feat_lip': feat_lip
44
+ }
45
+
46
+ return inputs
47
+
48
+
49
+ def load_and_compile_models(cfg, model_config):
50
+ """
51
+ Load and compile models for inference
52
+ """
53
+ appearance_feature_extractor = load_model(cfg.checkpoint_F, model_config, cfg.device_id, 'appearance_feature_extractor')
54
+ motion_extractor = load_model(cfg.checkpoint_M, model_config, cfg.device_id, 'motion_extractor')
55
+ warping_module = load_model(cfg.checkpoint_W, model_config, cfg.device_id, 'warping_module')
56
+ spade_generator = load_model(cfg.checkpoint_G, model_config, cfg.device_id, 'spade_generator')
57
+ stitching_retargeting_module = load_model(cfg.checkpoint_S, model_config, cfg.device_id, 'stitching_retargeting_module')
58
+
59
+ models_with_params = [
60
+ ('Appearance Feature Extractor', appearance_feature_extractor),
61
+ ('Motion Extractor', motion_extractor),
62
+ ('Warping Network', warping_module),
63
+ ('SPADE Decoder', spade_generator)
64
+ ]
65
+
66
+ compiled_models = {}
67
+ for name, model in models_with_params:
68
+ model = model.half()
69
+ model = torch.compile(model, mode='max-autotune') # Optimize for inference
70
+ model.eval() # Switch to evaluation mode
71
+ compiled_models[name] = model
72
+
73
+ retargeting_models = ['stitching', 'eye', 'lip']
74
+ for retarget in retargeting_models:
75
+ module = stitching_retargeting_module[retarget].half()
76
+ module = torch.compile(module, mode='max-autotune') # Optimize for inference
77
+ module.eval() # Switch to evaluation mode
78
+ stitching_retargeting_module[retarget] = module
79
+
80
+ return compiled_models, stitching_retargeting_module
81
+
82
+
83
+ def warm_up_models(compiled_models, stitching_retargeting_module, inputs):
84
+ """
85
+ Warm up models to prepare them for benchmarking
86
+ """
87
+ print("Warm up start!")
88
+ with torch.no_grad():
89
+ for _ in range(10):
90
+ compiled_models['Appearance Feature Extractor'](inputs['source_image'])
91
+ compiled_models['Motion Extractor'](inputs['source_image'])
92
+ compiled_models['Warping Network'](inputs['feature_3d'], inputs['kp_driving'], inputs['kp_source'])
93
+ compiled_models['SPADE Decoder'](inputs['generator_input']) # Adjust input as required
94
+ stitching_retargeting_module['stitching'](inputs['feat_stitching'])
95
+ stitching_retargeting_module['eye'](inputs['feat_eye'])
96
+ stitching_retargeting_module['lip'](inputs['feat_lip'])
97
+ print("Warm up end!")
98
+
99
+
100
+ def measure_inference_times(compiled_models, stitching_retargeting_module, inputs):
101
+ """
102
+ Measure inference times for each model
103
+ """
104
+ times = {name: [] for name in compiled_models.keys()}
105
+ times['Stitching and Retargeting Modules'] = []
106
+
107
+ overall_times = []
108
+
109
+ with torch.no_grad():
110
+ for _ in range(100):
111
+ torch.cuda.synchronize()
112
+ overall_start = time.time()
113
+
114
+ start = time.time()
115
+ compiled_models['Appearance Feature Extractor'](inputs['source_image'])
116
+ torch.cuda.synchronize()
117
+ times['Appearance Feature Extractor'].append(time.time() - start)
118
+
119
+ start = time.time()
120
+ compiled_models['Motion Extractor'](inputs['source_image'])
121
+ torch.cuda.synchronize()
122
+ times['Motion Extractor'].append(time.time() - start)
123
+
124
+ start = time.time()
125
+ compiled_models['Warping Network'](inputs['feature_3d'], inputs['kp_driving'], inputs['kp_source'])
126
+ torch.cuda.synchronize()
127
+ times['Warping Network'].append(time.time() - start)
128
+
129
+ start = time.time()
130
+ compiled_models['SPADE Decoder'](inputs['generator_input']) # Adjust input as required
131
+ torch.cuda.synchronize()
132
+ times['SPADE Decoder'].append(time.time() - start)
133
+
134
+ start = time.time()
135
+ stitching_retargeting_module['stitching'](inputs['feat_stitching'])
136
+ stitching_retargeting_module['eye'](inputs['feat_eye'])
137
+ stitching_retargeting_module['lip'](inputs['feat_lip'])
138
+ torch.cuda.synchronize()
139
+ times['Stitching and Retargeting Modules'].append(time.time() - start)
140
+
141
+ overall_times.append(time.time() - overall_start)
142
+
143
+ return times, overall_times
144
+
145
+
146
+ def print_benchmark_results(compiled_models, stitching_retargeting_module, retargeting_models, times, overall_times):
147
+ """
148
+ Print benchmark results with average and standard deviation of inference times
149
+ """
150
+ average_times = {name: np.mean(times[name]) * 1000 for name in times.keys()}
151
+ std_times = {name: np.std(times[name]) * 1000 for name in times.keys()}
152
+
153
+ for name, model in compiled_models.items():
154
+ num_params = sum(p.numel() for p in model.parameters())
155
+ num_params_in_millions = num_params / 1e6
156
+ print(f"Number of parameters for {name}: {num_params_in_millions:.2f} M")
157
+
158
+ for index, retarget in enumerate(retargeting_models):
159
+ num_params = sum(p.numel() for p in stitching_retargeting_module[retarget].parameters())
160
+ num_params_in_millions = num_params / 1e6
161
+ print(f"Number of parameters for part_{index} in Stitching and Retargeting Modules: {num_params_in_millions:.2f} M")
162
+
163
+ for name, avg_time in average_times.items():
164
+ std_time = std_times[name]
165
+ print(f"Average inference time for {name} over 100 runs: {avg_time:.2f} ms (std: {std_time:.2f} ms)")
166
+
167
+
168
+ def main():
169
+ """
170
+ Main function to benchmark speed and model parameters
171
+ """
172
+ # Load configuration
173
+ cfg = InferenceConfig()
174
+ model_config_path = cfg.models_config
175
+ with open(model_config_path, 'r') as file:
176
+ model_config = yaml.safe_load(file)
177
+
178
+ # Sample input tensors
179
+ inputs = initialize_inputs(device_id = cfg.device_id)
180
+
181
+ # Load and compile models
182
+ compiled_models, stitching_retargeting_module = load_and_compile_models(cfg, model_config)
183
+
184
+ # Warm up models
185
+ warm_up_models(compiled_models, stitching_retargeting_module, inputs)
186
+
187
+ # Measure inference times
188
+ times, overall_times = measure_inference_times(compiled_models, stitching_retargeting_module, inputs)
189
+
190
+ # Print benchmark results
191
+ print_benchmark_results(compiled_models, stitching_retargeting_module, ['stitching', 'eye', 'lip'], times, overall_times)
192
+
193
+
194
+ if __name__ == "__main__":
195
+ main()
src/config/__init__.py ADDED
File without changes
src/config/argument_config.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ All configs for user
5
+ """
6
+
7
+ from dataclasses import dataclass
8
+ import tyro
9
+ from typing_extensions import Annotated
10
+ from typing import Optional
11
+ from .base_config import PrintableConfig, make_abs_path
12
+
13
+
14
+ @dataclass(repr=False) # use repr from PrintableConfig
15
+ class ArgumentConfig(PrintableConfig):
16
+ ########## input arguments ##########
17
+ source_image: Annotated[str, tyro.conf.arg(aliases=["-s"])] = make_abs_path('../../assets/examples/source/s6.jpg') # path to the source portrait
18
+ driving_info: Annotated[str, tyro.conf.arg(aliases=["-d"])] = make_abs_path('../../assets/examples/driving/d0.mp4') # path to driving video or template (.pkl format)
19
+ output_dir: Annotated[str, tyro.conf.arg(aliases=["-o"])] = 'animations/' # directory to save output video
20
+
21
+ ########## inference arguments ##########
22
+ flag_use_half_precision: bool = True # whether to use half precision (FP16). If black boxes appear, it might be due to GPU incompatibility; set to False.
23
+ flag_crop_driving_video: bool = False # whether to crop the driving video, if the given driving info is a video
24
+ device_id: int = 0 # gpu device id
25
+ flag_force_cpu: bool = False # force cpu inference, WIP!
26
+ flag_lip_zero: bool = True # whether let the lip to close state before animation, only take effect when flag_eye_retargeting and flag_lip_retargeting is False
27
+ flag_eye_retargeting: bool = False # not recommend to be True, WIP
28
+ flag_lip_retargeting: bool = False # not recommend to be True, WIP
29
+ flag_stitching: bool = True # recommend to True if head movement is small, False if head movement is large
30
+ flag_relative_motion: bool = True # whether to use relative motion
31
+ flag_pasteback: bool = True # whether to paste-back/stitch the animated face cropping from the face-cropping space to the original image space
32
+ flag_do_crop: bool = True # whether to crop the source portrait to the face-cropping space
33
+ flag_do_rot: bool = True # whether to conduct the rotation when flag_do_crop is True
34
+
35
+ ########## crop arguments ##########
36
+ scale: float = 2.3 # the ratio of face area is smaller if scale is larger
37
+ vx_ratio: float = 0 # the ratio to move the face to left or right in cropping space
38
+ vy_ratio: float = -0.125 # the ratio to move the face to up or down in cropping space
39
+
40
+ scale_crop_video: float = 2.2 # scale factor for cropping video
41
+ vx_ratio_crop_video: float = 0. # adjust y offset
42
+ vy_ratio_crop_video: float = -0.1 # adjust x offset
43
+
44
+ ########## gradio arguments ##########
45
+ server_port: Annotated[int, tyro.conf.arg(aliases=["-p"])] = 8890 # port for gradio server
46
+ share: bool = False # whether to share the server to public
47
+ server_name: Optional[str] = "127.0.0.1" # set the local server name, "0.0.0.0" to broadcast all
48
+ flag_do_torch_compile: bool = False # whether to use torch.compile to accelerate generation
src/config/base_config.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ pretty printing class
5
+ """
6
+
7
+ from __future__ import annotations
8
+ import os.path as osp
9
+ from typing import Tuple
10
+
11
+
12
+ def make_abs_path(fn):
13
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
14
+
15
+
16
+ class PrintableConfig: # pylint: disable=too-few-public-methods
17
+ """Printable Config defining str function"""
18
+
19
+ def __repr__(self):
20
+ lines = [self.__class__.__name__ + ":"]
21
+ for key, val in vars(self).items():
22
+ if isinstance(val, Tuple):
23
+ flattened_val = "["
24
+ for item in val:
25
+ flattened_val += str(item) + "\n"
26
+ flattened_val = flattened_val.rstrip("\n")
27
+ val = flattened_val + "]"
28
+ lines += f"{key}: {str(val)}".split("\n")
29
+ return "\n ".join(lines)
src/config/crop_config.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ parameters used for crop faces
5
+ """
6
+
7
+ from dataclasses import dataclass
8
+
9
+ from .base_config import PrintableConfig
10
+
11
+
12
+ @dataclass(repr=False) # use repr from PrintableConfig
13
+ class CropConfig(PrintableConfig):
14
+ insightface_root: str = "../../pretrained_weights/insightface"
15
+ landmark_ckpt_path: str = "../../pretrained_weights/liveportrait/landmark.onnx"
16
+ device_id: int = 0 # gpu device id
17
+ flag_force_cpu: bool = False # force cpu inference, WIP
18
+ ########## source image cropping option ##########
19
+ dsize: int = 512 # crop size
20
+ scale: float = 2.5 # scale factor
21
+ vx_ratio: float = 0 # vx ratio
22
+ vy_ratio: float = -0.125 # vy ratio +up, -down
23
+ max_face_num: int = 0 # max face number, 0 mean no limit
24
+
25
+ ########## driving video auto cropping option ##########
26
+ scale_crop_video: float = 2.2 # 2.0 # scale factor for cropping video
27
+ vx_ratio_crop_video: float = 0.0 # adjust y offset
28
+ vy_ratio_crop_video: float = -0.1 # adjust x offset
29
+ direction: str = "large-small" # direction of cropping
src/config/inference_config.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ config dataclass used for inference
5
+ """
6
+
7
+ import os.path as osp
8
+ import cv2
9
+ from numpy import ndarray
10
+ from dataclasses import dataclass
11
+ from typing import Literal, Tuple
12
+ from .base_config import PrintableConfig, make_abs_path
13
+
14
+
15
+ @dataclass(repr=False) # use repr from PrintableConfig
16
+ class InferenceConfig(PrintableConfig):
17
+ # MODEL CONFIG, NOT EXPORTED PARAMS
18
+ models_config: str = make_abs_path('./models.yaml') # portrait animation config
19
+ checkpoint_F: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F
20
+ checkpoint_M: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M
21
+ checkpoint_G: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/spade_generator.pth') # path to checkpoint of G
22
+ checkpoint_W: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W
23
+ checkpoint_S: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip
24
+
25
+ # EXPORTED PARAMS
26
+ flag_use_half_precision: bool = True
27
+ flag_crop_driving_video: bool = False
28
+ device_id: int = 0
29
+ flag_lip_zero: bool = True
30
+ flag_eye_retargeting: bool = False
31
+ flag_lip_retargeting: bool = False
32
+ flag_stitching: bool = True
33
+ flag_relative_motion: bool = True
34
+ flag_pasteback: bool = True
35
+ flag_do_crop: bool = True
36
+ flag_do_rot: bool = True
37
+ flag_force_cpu: bool = False
38
+ flag_do_torch_compile: bool = False
39
+
40
+ # NOT EXPORTED PARAMS
41
+ lip_zero_threshold: float = 0.03 # threshold for flag_lip_zero
42
+ anchor_frame: int = 0 # TO IMPLEMENT
43
+
44
+ input_shape: Tuple[int, int] = (256, 256) # input shape
45
+ output_format: Literal['mp4', 'gif'] = 'mp4' # output video format
46
+ crf: int = 15 # crf for output video
47
+ output_fps: int = 25 # default output fps
48
+
49
+ mask_crop: ndarray = cv2.imread(make_abs_path('../utils/resources/mask_template.png'), cv2.IMREAD_COLOR)
50
+ size_gif: int = 256 # default gif size, TO IMPLEMENT
51
+ source_max_dim: int = 1280 # the max dim of height and width of source image
52
+ source_division: int = 2 # make sure the height and width of source image can be divided by this number
src/config/models.yaml ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model_params:
2
+ appearance_feature_extractor_params: # the F in the paper
3
+ image_channel: 3
4
+ block_expansion: 64
5
+ num_down_blocks: 2
6
+ max_features: 512
7
+ reshape_channel: 32
8
+ reshape_depth: 16
9
+ num_resblocks: 6
10
+ motion_extractor_params: # the M in the paper
11
+ num_kp: 21
12
+ backbone: convnextv2_tiny
13
+ warping_module_params: # the W in the paper
14
+ num_kp: 21
15
+ block_expansion: 64
16
+ max_features: 512
17
+ num_down_blocks: 2
18
+ reshape_channel: 32
19
+ estimate_occlusion_map: True
20
+ dense_motion_params:
21
+ block_expansion: 32
22
+ max_features: 1024
23
+ num_blocks: 5
24
+ reshape_depth: 16
25
+ compress: 4
26
+ spade_generator_params: # the G in the paper
27
+ upscale: 2 # represents upsample factor 256x256 -> 512x512
28
+ block_expansion: 64
29
+ max_features: 512
30
+ num_down_blocks: 2
31
+ stitching_retargeting_module_params: # the S in the paper
32
+ stitching:
33
+ input_size: 126 # (21*3)*2
34
+ hidden_sizes: [128, 128, 64]
35
+ output_size: 65 # (21*3)+2(tx,ty)
36
+ lip:
37
+ input_size: 65 # (21*3)+2
38
+ hidden_sizes: [128, 128, 64]
39
+ output_size: 63 # (21*3)
40
+ eye:
41
+ input_size: 66 # (21*3)+3
42
+ hidden_sizes: [256, 256, 128, 128, 64]
43
+ output_size: 63 # (21*3)
src/gradio_pipeline.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Pipeline for gradio
5
+ """
6
+ import gradio as gr
7
+
8
+ from .config.argument_config import ArgumentConfig
9
+ from .live_portrait_pipeline import LivePortraitPipeline
10
+ from .utils.io import load_img_online
11
+ from .utils.rprint import rlog as log
12
+ from .utils.crop import prepare_paste_back, paste_back
13
+ from .utils.camera import get_rotation_matrix
14
+
15
+
16
+ def update_args(args, user_args):
17
+ """update the args according to user inputs
18
+ """
19
+ for k, v in user_args.items():
20
+ if hasattr(args, k):
21
+ setattr(args, k, v)
22
+ return args
23
+
24
+
25
+ class GradioPipeline(LivePortraitPipeline):
26
+
27
+ def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
28
+ super().__init__(inference_cfg, crop_cfg)
29
+ # self.live_portrait_wrapper = self.live_portrait_wrapper
30
+ self.args = args
31
+
32
+ def execute_video(
33
+ self,
34
+ input_image_path,
35
+ input_video_path,
36
+ flag_relative_input,
37
+ flag_do_crop_input,
38
+ flag_remap_input,
39
+ flag_crop_driving_video_input
40
+ ):
41
+ """ for video driven potrait animation
42
+ """
43
+ if input_image_path is not None and input_video_path is not None:
44
+ args_user = {
45
+ 'source_image': input_image_path,
46
+ 'driving_info': input_video_path,
47
+ 'flag_relative': flag_relative_input,
48
+ 'flag_do_crop': flag_do_crop_input,
49
+ 'flag_pasteback': flag_remap_input,
50
+ 'flag_crop_driving_video': flag_crop_driving_video_input
51
+ }
52
+ # update config from user input
53
+ self.args = update_args(self.args, args_user)
54
+ self.live_portrait_wrapper.update_config(self.args.__dict__)
55
+ self.cropper.update_config(self.args.__dict__)
56
+ # video driven animation
57
+ video_path, video_path_concat = self.execute(self.args)
58
+ gr.Info("Run successfully!", duration=2)
59
+ return video_path, video_path_concat,
60
+ else:
61
+ raise gr.Error("The input source portrait or driving video hasn't been prepared yet 💥!", duration=5)
62
+
63
+ def execute_image(self, input_eye_ratio: float, input_lip_ratio: float, input_image, flag_do_crop=True):
64
+ """ for single image retargeting
65
+ """
66
+ # disposable feature
67
+ f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
68
+ self.prepare_retargeting(input_image, flag_do_crop)
69
+
70
+ if input_eye_ratio is None or input_lip_ratio is None:
71
+ raise gr.Error("Invalid ratio input 💥!", duration=5)
72
+ else:
73
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
74
+ x_s_user = x_s_user.to(self.live_portrait_wrapper.device)
75
+ f_s_user = f_s_user.to(self.live_portrait_wrapper.device)
76
+ # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
77
+ combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[input_eye_ratio]], source_lmk_user)
78
+ eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_user, combined_eye_ratio_tensor)
79
+ # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
80
+ combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[input_lip_ratio]], source_lmk_user)
81
+ lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor)
82
+ num_kp = x_s_user.shape[1]
83
+ # default: use x_s
84
+ x_d_new = x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
85
+ # D(W(f_s; x_s, x′_d))
86
+ out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new)
87
+ out = self.live_portrait_wrapper.parse_output(out['out'])[0]
88
+ out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori)
89
+ gr.Info("Run successfully!", duration=2)
90
+ return out, out_to_ori_blend
91
+
92
+ def prepare_retargeting(self, input_image, flag_do_crop=True):
93
+ """ for single image retargeting
94
+ """
95
+ if input_image is not None:
96
+ # gr.Info("Upload successfully!", duration=2)
97
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
98
+ ######## process source portrait ########
99
+ img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=16)
100
+ log(f"Load source image from {input_image}.")
101
+ crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
102
+ if flag_do_crop:
103
+ I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
104
+ else:
105
+ I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
106
+ x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
107
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
108
+ ############################################
109
+ f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
110
+ x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
111
+ source_lmk_user = crop_info['lmk_crop']
112
+ crop_M_c2o = crop_info['M_c2o']
113
+ mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
114
+ return f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
115
+ else:
116
+ # when press the clear button, go here
117
+ raise gr.Error("The retargeting input hasn't been prepared yet 💥!", duration=5)
src/live_portrait_pipeline.py ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Pipeline of LivePortrait
5
+ """
6
+
7
+ import torch
8
+ torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning
9
+
10
+ import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
11
+ import numpy as np
12
+ import os
13
+ import os.path as osp
14
+ from rich.progress import track
15
+
16
+ from .config.argument_config import ArgumentConfig
17
+ from .config.inference_config import InferenceConfig
18
+ from .config.crop_config import CropConfig
19
+ from .utils.cropper import Cropper
20
+ from .utils.camera import get_rotation_matrix
21
+ from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream
22
+ from .utils.crop import _transform_img, prepare_paste_back, paste_back
23
+ from .utils.io import load_image_rgb, load_driving_info, resize_to_limit, dump, load
24
+ from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix
25
+ from .utils.rprint import rlog as log
26
+ # from .utils.viz import viz_lmk
27
+ from .live_portrait_wrapper import LivePortraitWrapper
28
+
29
+
30
+ def make_abs_path(fn):
31
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
32
+
33
+
34
+ class LivePortraitPipeline(object):
35
+
36
+ def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
37
+ self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg)
38
+ self.cropper: Cropper = Cropper(crop_cfg=crop_cfg)
39
+
40
+ def execute(self, args: ArgumentConfig):
41
+ # for convenience
42
+ inf_cfg = self.live_portrait_wrapper.inference_cfg
43
+ device = self.live_portrait_wrapper.device
44
+ crop_cfg = self.cropper.crop_cfg
45
+
46
+ ######## process source portrait ########
47
+ img_rgb = load_image_rgb(args.source_image)
48
+ img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
49
+ log(f"Load source image from {args.source_image}")
50
+
51
+ crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
52
+ if crop_info is None:
53
+ raise Exception("No face detected in the source image!")
54
+ source_lmk = crop_info['lmk_crop']
55
+ img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
56
+
57
+ if inf_cfg.flag_do_crop:
58
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
59
+ else:
60
+ img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
61
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
62
+ x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
63
+ x_c_s = x_s_info['kp']
64
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
65
+ f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
66
+ x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
67
+
68
+ flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite
69
+ if flag_lip_zero:
70
+ # let lip-open scalar to be 0 at first
71
+ c_d_lip_before_animation = [0.]
72
+ combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
73
+ if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
74
+ flag_lip_zero = False
75
+ else:
76
+ lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
77
+ ############################################
78
+
79
+ ######## process driving info ########
80
+ flag_load_from_template = is_template(args.driving_info)
81
+ driving_rgb_crop_256x256_lst = None
82
+ wfp_template = None
83
+
84
+ if flag_load_from_template:
85
+ # NOTE: load from template, it is fast, but the cropping video is None
86
+ log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
87
+ template_dct = load(args.driving_info)
88
+ n_frames = template_dct['n_frames']
89
+
90
+ # set output_fps
91
+ output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
92
+ log(f'The FPS of template: {output_fps}')
93
+
94
+ if args.flag_crop_driving_video:
95
+ log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
96
+
97
+ elif osp.exists(args.driving_info) and is_video(args.driving_info):
98
+ # load from video file, AND make motion template
99
+ log(f"Load video: {args.driving_info}")
100
+ if osp.isdir(args.driving_info):
101
+ output_fps = inf_cfg.output_fps
102
+ else:
103
+ output_fps = int(get_fps(args.driving_info))
104
+ log(f'The FPS of {args.driving_info} is: {output_fps}')
105
+
106
+ log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
107
+ driving_rgb_lst = load_driving_info(args.driving_info)
108
+
109
+ ######## make motion template ########
110
+ log("Start making motion template...")
111
+ if inf_cfg.flag_crop_driving_video:
112
+ ret = self.cropper.crop_driving_video(driving_rgb_lst)
113
+ log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
114
+ driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
115
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
116
+ else:
117
+ driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
118
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
119
+
120
+ c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
121
+ # save the motion template
122
+ I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
123
+ template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
124
+
125
+ wfp_template = remove_suffix(args.driving_info) + '.pkl'
126
+ dump(wfp_template, template_dct)
127
+ log(f"Dump motion template to {wfp_template}")
128
+
129
+ n_frames = I_d_lst.shape[0]
130
+ else:
131
+ raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
132
+ #########################################
133
+
134
+ ######## prepare for pasteback ########
135
+ I_p_pstbk_lst = None
136
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
137
+ mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
138
+ I_p_pstbk_lst = []
139
+ log("Prepared pasteback mask done.")
140
+ #########################################
141
+
142
+ I_p_lst = []
143
+ R_d_0, x_d_0_info = None, None
144
+
145
+ for i in track(range(n_frames), description='🚀Animating...', total=n_frames):
146
+ x_d_i_info = template_dct['motion'][i]
147
+ x_d_i_info = dct2device(x_d_i_info, device)
148
+ R_d_i = x_d_i_info['R_d']
149
+
150
+ if i == 0:
151
+ R_d_0 = R_d_i
152
+ x_d_0_info = x_d_i_info
153
+
154
+ if inf_cfg.flag_relative_motion:
155
+ R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
156
+ delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
157
+ scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
158
+ t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
159
+ else:
160
+ R_new = R_d_i
161
+ delta_new = x_d_i_info['exp']
162
+ scale_new = x_s_info['scale']
163
+ t_new = x_d_i_info['t']
164
+
165
+ t_new[..., 2].fill_(0) # zero tz
166
+ x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
167
+
168
+ # Algorithm 1:
169
+ if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
170
+ # without stitching or retargeting
171
+ if flag_lip_zero:
172
+ x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
173
+ else:
174
+ pass
175
+ elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
176
+ # with stitching and without retargeting
177
+ if flag_lip_zero:
178
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
179
+ else:
180
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
181
+ else:
182
+ eyes_delta, lip_delta = None, None
183
+ if inf_cfg.flag_eye_retargeting:
184
+ c_d_eyes_i = c_d_eyes_lst[i]
185
+ combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
186
+ # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
187
+ eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
188
+ if inf_cfg.flag_lip_retargeting:
189
+ c_d_lip_i = c_d_lip_lst[i]
190
+ combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
191
+ # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
192
+ lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)
193
+
194
+ if inf_cfg.flag_relative_motion: # use x_s
195
+ x_d_i_new = x_s + \
196
+ (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
197
+ (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
198
+ else: # use x_d,i
199
+ x_d_i_new = x_d_i_new + \
200
+ (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
201
+ (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
202
+
203
+ if inf_cfg.flag_stitching:
204
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
205
+
206
+ out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
207
+ I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
208
+ I_p_lst.append(I_p_i)
209
+
210
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
211
+ # TODO: pasteback is slow, considering optimize it using multi-threading or GPU
212
+ I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori_float)
213
+ I_p_pstbk_lst.append(I_p_pstbk)
214
+
215
+ mkdir(args.output_dir)
216
+ wfp_concat = None
217
+ flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)
218
+
219
+ ######### build final concact result #########
220
+ # driving frame | source image | generation, or source image | generation
221
+ frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256, I_p_lst)
222
+ wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4')
223
+ images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
224
+
225
+ if flag_has_audio:
226
+ # final result with concact
227
+ wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat_with_audio.mp4')
228
+ add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
229
+ os.replace(wfp_concat_with_audio, wfp_concat)
230
+ log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
231
+
232
+ # save drived result
233
+ wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4')
234
+ if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
235
+ images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
236
+ else:
237
+ images2video(I_p_lst, wfp=wfp, fps=output_fps)
238
+
239
+ ######### build final result #########
240
+ if flag_has_audio:
241
+ wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
242
+ add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
243
+ os.replace(wfp_with_audio, wfp)
244
+ log(f"Replace {wfp} with {wfp_with_audio}")
245
+
246
+ # final log
247
+ if wfp_template not in (None, ''):
248
+ log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
249
+ log(f'Animated video: {wfp}')
250
+ log(f'Animated video with concact: {wfp_concat}')
251
+
252
+ return wfp, wfp_concat
253
+
254
+ def make_motion_template(self, I_d_lst, c_d_eyes_lst, c_d_lip_lst, **kwargs):
255
+ n_frames = I_d_lst.shape[0]
256
+ template_dct = {
257
+ 'n_frames': n_frames,
258
+ 'output_fps': kwargs.get('output_fps', 25),
259
+ 'motion': [],
260
+ 'c_d_eyes_lst': [],
261
+ 'c_d_lip_lst': [],
262
+ }
263
+
264
+ for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
265
+ # collect s_d, R_d, δ_d and t_d for inference
266
+ I_d_i = I_d_lst[i]
267
+ x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i)
268
+ R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll'])
269
+
270
+ item_dct = {
271
+ 'scale': x_d_i_info['scale'].cpu().numpy().astype(np.float32),
272
+ 'R_d': R_d_i.cpu().numpy().astype(np.float32),
273
+ 'exp': x_d_i_info['exp'].cpu().numpy().astype(np.float32),
274
+ 't': x_d_i_info['t'].cpu().numpy().astype(np.float32),
275
+ }
276
+
277
+ template_dct['motion'].append(item_dct)
278
+
279
+ c_d_eyes = c_d_eyes_lst[i].astype(np.float32)
280
+ template_dct['c_d_eyes_lst'].append(c_d_eyes)
281
+
282
+ c_d_lip = c_d_lip_lst[i].astype(np.float32)
283
+ template_dct['c_d_lip_lst'].append(c_d_lip)
284
+
285
+ return template_dct
src/live_portrait_wrapper.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Wrapper for LivePortrait core functions
5
+ """
6
+
7
+ import os.path as osp
8
+ import numpy as np
9
+ import cv2
10
+ import torch
11
+ import yaml
12
+
13
+ from .utils.timer import Timer
14
+ from .utils.helper import load_model, concat_feat
15
+ from .utils.camera import headpose_pred_to_degree, get_rotation_matrix
16
+ from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
17
+ from .config.inference_config import InferenceConfig
18
+ from .utils.rprint import rlog as log
19
+
20
+
21
+ class LivePortraitWrapper(object):
22
+
23
+ def __init__(self, inference_cfg: InferenceConfig):
24
+
25
+ self.inference_cfg = inference_cfg
26
+ self.device_id = inference_cfg.device_id
27
+ self.compile = inference_cfg.flag_do_torch_compile
28
+ if inference_cfg.flag_force_cpu:
29
+ self.device = 'cpu'
30
+ else:
31
+ self.device = 'cuda:' + str(self.device_id)
32
+
33
+ model_config = yaml.load(open(inference_cfg.models_config, 'r'), Loader=yaml.SafeLoader)
34
+ # init F
35
+ self.appearance_feature_extractor = load_model(inference_cfg.checkpoint_F, model_config, self.device, 'appearance_feature_extractor')
36
+ log(f'Load appearance_feature_extractor done.')
37
+ # init M
38
+ self.motion_extractor = load_model(inference_cfg.checkpoint_M, model_config, self.device, 'motion_extractor')
39
+ log(f'Load motion_extractor done.')
40
+ # init W
41
+ self.warping_module = load_model(inference_cfg.checkpoint_W, model_config, self.device, 'warping_module')
42
+ log(f'Load warping_module done.')
43
+ # init G
44
+ self.spade_generator = load_model(inference_cfg.checkpoint_G, model_config, self.device, 'spade_generator')
45
+ log(f'Load spade_generator done.')
46
+ # init S and R
47
+ if inference_cfg.checkpoint_S is not None and osp.exists(inference_cfg.checkpoint_S):
48
+ self.stitching_retargeting_module = load_model(inference_cfg.checkpoint_S, model_config, self.device, 'stitching_retargeting_module')
49
+ log(f'Load stitching_retargeting_module done.')
50
+ else:
51
+ self.stitching_retargeting_module = None
52
+ # Optimize for inference
53
+ if self.compile:
54
+ torch._dynamo.config.suppress_errors = True # Suppress errors and fall back to eager execution
55
+ self.warping_module = torch.compile(self.warping_module, mode='max-autotune')
56
+ self.spade_generator = torch.compile(self.spade_generator, mode='max-autotune')
57
+
58
+ self.timer = Timer()
59
+
60
+ def update_config(self, user_args):
61
+ for k, v in user_args.items():
62
+ if hasattr(self.inference_cfg, k):
63
+ setattr(self.inference_cfg, k, v)
64
+
65
+ def prepare_source(self, img: np.ndarray) -> torch.Tensor:
66
+ """ construct the input as standard
67
+ img: HxWx3, uint8, 256x256
68
+ """
69
+ h, w = img.shape[:2]
70
+ if h != self.inference_cfg.input_shape[0] or w != self.inference_cfg.input_shape[1]:
71
+ x = cv2.resize(img, (self.inference_cfg.input_shape[0], self.inference_cfg.input_shape[1]))
72
+ else:
73
+ x = img.copy()
74
+
75
+ if x.ndim == 3:
76
+ x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
77
+ elif x.ndim == 4:
78
+ x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
79
+ else:
80
+ raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
81
+ x = np.clip(x, 0, 1) # clip to 0~1
82
+ x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
83
+ x = x.to(self.device)
84
+ return x
85
+
86
+ def prepare_driving_videos(self, imgs) -> torch.Tensor:
87
+ """ construct the input as standard
88
+ imgs: NxBxHxWx3, uint8
89
+ """
90
+ if isinstance(imgs, list):
91
+ _imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1
92
+ elif isinstance(imgs, np.ndarray):
93
+ _imgs = imgs
94
+ else:
95
+ raise ValueError(f'imgs type error: {type(imgs)}')
96
+
97
+ y = _imgs.astype(np.float32) / 255.
98
+ y = np.clip(y, 0, 1) # clip to 0~1
99
+ y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW
100
+ y = y.to(self.device)
101
+
102
+ return y
103
+
104
+ def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor:
105
+ """ get the appearance feature of the image by F
106
+ x: Bx3xHxW, normalized to 0~1
107
+ """
108
+ with torch.no_grad():
109
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
110
+ feature_3d = self.appearance_feature_extractor(x)
111
+
112
+ return feature_3d.float()
113
+
114
+ def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict:
115
+ """ get the implicit keypoint information
116
+ x: Bx3xHxW, normalized to 0~1
117
+ flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape
118
+ return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp'
119
+ """
120
+ with torch.no_grad():
121
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
122
+ kp_info = self.motion_extractor(x)
123
+
124
+ if self.inference_cfg.flag_use_half_precision:
125
+ # float the dict
126
+ for k, v in kp_info.items():
127
+ if isinstance(v, torch.Tensor):
128
+ kp_info[k] = v.float()
129
+
130
+ flag_refine_info: bool = kwargs.get('flag_refine_info', True)
131
+ if flag_refine_info:
132
+ bs = kp_info['kp'].shape[0]
133
+ kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1
134
+ kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1
135
+ kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1
136
+ kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) # BxNx3
137
+ kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) # BxNx3
138
+
139
+ return kp_info
140
+
141
+ def get_pose_dct(self, kp_info: dict) -> dict:
142
+ pose_dct = dict(
143
+ pitch=headpose_pred_to_degree(kp_info['pitch']).item(),
144
+ yaw=headpose_pred_to_degree(kp_info['yaw']).item(),
145
+ roll=headpose_pred_to_degree(kp_info['roll']).item(),
146
+ )
147
+ return pose_dct
148
+
149
+ def get_fs_and_kp_info(self, source_prepared, driving_first_frame):
150
+
151
+ # get the canonical keypoints of source image by M
152
+ source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True)
153
+ source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll'])
154
+
155
+ # get the canonical keypoints of first driving frame by M
156
+ driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True)
157
+ driving_first_frame_rotation = get_rotation_matrix(
158
+ driving_first_frame_kp_info['pitch'],
159
+ driving_first_frame_kp_info['yaw'],
160
+ driving_first_frame_kp_info['roll']
161
+ )
162
+
163
+ # get feature volume by F
164
+ source_feature_3d = self.extract_feature_3d(source_prepared)
165
+
166
+ return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation
167
+
168
+ def transform_keypoint(self, kp_info: dict):
169
+ """
170
+ transform the implicit keypoints with the pose, shift, and expression deformation
171
+ kp: BxNx3
172
+ """
173
+ kp = kp_info['kp'] # (bs, k, 3)
174
+ pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll']
175
+
176
+ t, exp = kp_info['t'], kp_info['exp']
177
+ scale = kp_info['scale']
178
+
179
+ pitch = headpose_pred_to_degree(pitch)
180
+ yaw = headpose_pred_to_degree(yaw)
181
+ roll = headpose_pred_to_degree(roll)
182
+
183
+ bs = kp.shape[0]
184
+ if kp.ndim == 2:
185
+ num_kp = kp.shape[1] // 3 # Bx(num_kpx3)
186
+ else:
187
+ num_kp = kp.shape[1] # Bxnum_kpx3
188
+
189
+ rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3)
190
+
191
+ # Eqn.2: s * (R * x_c,s + exp) + t
192
+ kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3)
193
+ kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
194
+ kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty
195
+
196
+ return kp_transformed
197
+
198
+ def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor:
199
+ """
200
+ kp_source: BxNx3
201
+ eye_close_ratio: Bx3
202
+ Return: Bx(3*num_kp)
203
+ """
204
+ feat_eye = concat_feat(kp_source, eye_close_ratio)
205
+
206
+ with torch.no_grad():
207
+ delta = self.stitching_retargeting_module['eye'](feat_eye)
208
+
209
+ return delta
210
+
211
+ def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor:
212
+ """
213
+ kp_source: BxNx3
214
+ lip_close_ratio: Bx2
215
+ Return: Bx(3*num_kp)
216
+ """
217
+ feat_lip = concat_feat(kp_source, lip_close_ratio)
218
+
219
+ with torch.no_grad():
220
+ delta = self.stitching_retargeting_module['lip'](feat_lip)
221
+
222
+ return delta
223
+
224
+ def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
225
+ """
226
+ kp_source: BxNx3
227
+ kp_driving: BxNx3
228
+ Return: Bx(3*num_kp+2)
229
+ """
230
+ feat_stiching = concat_feat(kp_source, kp_driving)
231
+
232
+ with torch.no_grad():
233
+ delta = self.stitching_retargeting_module['stitching'](feat_stiching)
234
+
235
+ return delta
236
+
237
+ def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
238
+ """ conduct the stitching
239
+ kp_source: Bxnum_kpx3
240
+ kp_driving: Bxnum_kpx3
241
+ """
242
+
243
+ if self.stitching_retargeting_module is not None:
244
+
245
+ bs, num_kp = kp_source.shape[:2]
246
+
247
+ kp_driving_new = kp_driving.clone()
248
+ delta = self.stitch(kp_source, kp_driving_new)
249
+
250
+ delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3
251
+ delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2
252
+
253
+ kp_driving_new += delta_exp
254
+ kp_driving_new[..., :2] += delta_tx_ty
255
+
256
+ return kp_driving_new
257
+
258
+ return kp_driving
259
+
260
+ def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
261
+ """ get the image after the warping of the implicit keypoints
262
+ feature_3d: Bx32x16x64x64, feature volume
263
+ kp_source: BxNx3
264
+ kp_driving: BxNx3
265
+ """
266
+ # The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i))
267
+ with torch.no_grad():
268
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
269
+ if self.compile:
270
+ # Mark the beginning of a new CUDA Graph step
271
+ torch.compiler.cudagraph_mark_step_begin()
272
+ # get decoder input
273
+ ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving)
274
+ # decode
275
+ ret_dct['out'] = self.spade_generator(feature=ret_dct['out'])
276
+
277
+ # float the dict
278
+ if self.inference_cfg.flag_use_half_precision:
279
+ for k, v in ret_dct.items():
280
+ if isinstance(v, torch.Tensor):
281
+ ret_dct[k] = v.float()
282
+
283
+ return ret_dct
284
+
285
+ def parse_output(self, out: torch.Tensor) -> np.ndarray:
286
+ """ construct the output as standard
287
+ return: 1xHxWx3, uint8
288
+ """
289
+ out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3
290
+ out = np.clip(out, 0, 1) # clip to 0~1
291
+ out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255
292
+
293
+ return out
294
+
295
+ def calc_driving_ratio(self, driving_lmk_lst):
296
+ input_eye_ratio_lst = []
297
+ input_lip_ratio_lst = []
298
+ for lmk in driving_lmk_lst:
299
+ # for eyes retargeting
300
+ input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None]))
301
+ # for lip retargeting
302
+ input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None]))
303
+ return input_eye_ratio_lst, input_lip_ratio_lst
304
+
305
+ def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk):
306
+ c_s_eyes = calc_eye_close_ratio(source_lmk[None])
307
+ c_s_eyes_tensor = torch.from_numpy(c_s_eyes).float().to(self.device)
308
+ c_d_eyes_i_tensor = torch.Tensor([c_d_eyes_i[0][0]]).reshape(1, 1).to(self.device)
309
+ # [c_s,eyes, c_d,eyes,i]
310
+ combined_eye_ratio_tensor = torch.cat([c_s_eyes_tensor, c_d_eyes_i_tensor], dim=1)
311
+ return combined_eye_ratio_tensor
312
+
313
+ def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk):
314
+ c_s_lip = calc_lip_close_ratio(source_lmk[None])
315
+ c_s_lip_tensor = torch.from_numpy(c_s_lip).float().to(self.device)
316
+ c_d_lip_i_tensor = torch.Tensor([c_d_lip_i[0]]).to(self.device).reshape(1, 1) # 1x1
317
+ # [c_s,lip, c_d,lip,i]
318
+ combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2
319
+ return combined_lip_ratio_tensor
src/modules/__init__.py ADDED
File without changes
src/modules/appearance_feature_extractor.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Appearance extractor(F) defined in paper, which maps the source image s to a 3D appearance feature volume.
5
+ """
6
+
7
+ import torch
8
+ from torch import nn
9
+ from .util import SameBlock2d, DownBlock2d, ResBlock3d
10
+
11
+
12
+ class AppearanceFeatureExtractor(nn.Module):
13
+
14
+ def __init__(self, image_channel, block_expansion, num_down_blocks, max_features, reshape_channel, reshape_depth, num_resblocks):
15
+ super(AppearanceFeatureExtractor, self).__init__()
16
+ self.image_channel = image_channel
17
+ self.block_expansion = block_expansion
18
+ self.num_down_blocks = num_down_blocks
19
+ self.max_features = max_features
20
+ self.reshape_channel = reshape_channel
21
+ self.reshape_depth = reshape_depth
22
+
23
+ self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1))
24
+
25
+ down_blocks = []
26
+ for i in range(num_down_blocks):
27
+ in_features = min(max_features, block_expansion * (2 ** i))
28
+ out_features = min(max_features, block_expansion * (2 ** (i + 1)))
29
+ down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
30
+ self.down_blocks = nn.ModuleList(down_blocks)
31
+
32
+ self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)
33
+
34
+ self.resblocks_3d = torch.nn.Sequential()
35
+ for i in range(num_resblocks):
36
+ self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))
37
+
38
+ def forward(self, source_image):
39
+ out = self.first(source_image) # Bx3x256x256 -> Bx64x256x256
40
+
41
+ for i in range(len(self.down_blocks)):
42
+ out = self.down_blocks[i](out)
43
+ out = self.second(out)
44
+ bs, c, h, w = out.shape # ->Bx512x64x64
45
+
46
+ f_s = out.view(bs, self.reshape_channel, self.reshape_depth, h, w) # ->Bx32x16x64x64
47
+ f_s = self.resblocks_3d(f_s) # ->Bx32x16x64x64
48
+ return f_s
src/modules/convnextv2.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation.
5
+ """
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ # from timm.models.layers import trunc_normal_, DropPath
10
+ from .util import LayerNorm, DropPath, trunc_normal_, GRN
11
+
12
+ __all__ = ['convnextv2_tiny']
13
+
14
+
15
+ class Block(nn.Module):
16
+ """ ConvNeXtV2 Block.
17
+
18
+ Args:
19
+ dim (int): Number of input channels.
20
+ drop_path (float): Stochastic depth rate. Default: 0.0
21
+ """
22
+
23
+ def __init__(self, dim, drop_path=0.):
24
+ super().__init__()
25
+ self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
26
+ self.norm = LayerNorm(dim, eps=1e-6)
27
+ self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
28
+ self.act = nn.GELU()
29
+ self.grn = GRN(4 * dim)
30
+ self.pwconv2 = nn.Linear(4 * dim, dim)
31
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
32
+
33
+ def forward(self, x):
34
+ input = x
35
+ x = self.dwconv(x)
36
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
37
+ x = self.norm(x)
38
+ x = self.pwconv1(x)
39
+ x = self.act(x)
40
+ x = self.grn(x)
41
+ x = self.pwconv2(x)
42
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
43
+
44
+ x = input + self.drop_path(x)
45
+ return x
46
+
47
+
48
+ class ConvNeXtV2(nn.Module):
49
+ """ ConvNeXt V2
50
+
51
+ Args:
52
+ in_chans (int): Number of input image channels. Default: 3
53
+ num_classes (int): Number of classes for classification head. Default: 1000
54
+ depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
55
+ dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
56
+ drop_path_rate (float): Stochastic depth rate. Default: 0.
57
+ head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
58
+ """
59
+
60
+ def __init__(
61
+ self,
62
+ in_chans=3,
63
+ depths=[3, 3, 9, 3],
64
+ dims=[96, 192, 384, 768],
65
+ drop_path_rate=0.,
66
+ **kwargs
67
+ ):
68
+ super().__init__()
69
+ self.depths = depths
70
+ self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
71
+ stem = nn.Sequential(
72
+ nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
73
+ LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
74
+ )
75
+ self.downsample_layers.append(stem)
76
+ for i in range(3):
77
+ downsample_layer = nn.Sequential(
78
+ LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
79
+ nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
80
+ )
81
+ self.downsample_layers.append(downsample_layer)
82
+
83
+ self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
84
+ dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
85
+ cur = 0
86
+ for i in range(4):
87
+ stage = nn.Sequential(
88
+ *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
89
+ )
90
+ self.stages.append(stage)
91
+ cur += depths[i]
92
+
93
+ self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
94
+
95
+ # NOTE: the output semantic items
96
+ num_bins = kwargs.get('num_bins', 66)
97
+ num_kp = kwargs.get('num_kp', 24) # the number of implicit keypoints
98
+ self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) # implicit keypoints
99
+
100
+ # print('dims[-1]: ', dims[-1])
101
+ self.fc_scale = nn.Linear(dims[-1], 1) # scale
102
+ self.fc_pitch = nn.Linear(dims[-1], num_bins) # pitch bins
103
+ self.fc_yaw = nn.Linear(dims[-1], num_bins) # yaw bins
104
+ self.fc_roll = nn.Linear(dims[-1], num_bins) # roll bins
105
+ self.fc_t = nn.Linear(dims[-1], 3) # translation
106
+ self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) # expression / delta
107
+
108
+ def _init_weights(self, m):
109
+ if isinstance(m, (nn.Conv2d, nn.Linear)):
110
+ trunc_normal_(m.weight, std=.02)
111
+ nn.init.constant_(m.bias, 0)
112
+
113
+ def forward_features(self, x):
114
+ for i in range(4):
115
+ x = self.downsample_layers[i](x)
116
+ x = self.stages[i](x)
117
+ return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
118
+
119
+ def forward(self, x):
120
+ x = self.forward_features(x)
121
+
122
+ # implicit keypoints
123
+ kp = self.fc_kp(x)
124
+
125
+ # pose and expression deformation
126
+ pitch = self.fc_pitch(x)
127
+ yaw = self.fc_yaw(x)
128
+ roll = self.fc_roll(x)
129
+ t = self.fc_t(x)
130
+ exp = self.fc_exp(x)
131
+ scale = self.fc_scale(x)
132
+
133
+ ret_dct = {
134
+ 'pitch': pitch,
135
+ 'yaw': yaw,
136
+ 'roll': roll,
137
+ 't': t,
138
+ 'exp': exp,
139
+ 'scale': scale,
140
+
141
+ 'kp': kp, # canonical keypoint
142
+ }
143
+
144
+ return ret_dct
145
+
146
+
147
+ def convnextv2_tiny(**kwargs):
148
+ model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
149
+ return model
src/modules/dense_motion.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ The module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
5
+ """
6
+
7
+ from torch import nn
8
+ import torch.nn.functional as F
9
+ import torch
10
+ from .util import Hourglass, make_coordinate_grid, kp2gaussian
11
+
12
+
13
+ class DenseMotionNetwork(nn.Module):
14
+ def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, estimate_occlusion_map=True):
15
+ super(DenseMotionNetwork, self).__init__()
16
+ self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks) # ~60+G
17
+
18
+ self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3) # 65G! NOTE: computation cost is large
19
+ self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1) # 0.8G
20
+ self.norm = nn.BatchNorm3d(compress, affine=True)
21
+ self.num_kp = num_kp
22
+ self.flag_estimate_occlusion_map = estimate_occlusion_map
23
+
24
+ if self.flag_estimate_occlusion_map:
25
+ self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3)
26
+ else:
27
+ self.occlusion = None
28
+
29
+ def create_sparse_motions(self, feature, kp_driving, kp_source):
30
+ bs, _, d, h, w = feature.shape # (bs, 4, 16, 64, 64)
31
+ identity_grid = make_coordinate_grid((d, h, w), ref=kp_source) # (16, 64, 64, 3)
32
+ identity_grid = identity_grid.view(1, 1, d, h, w, 3) # (1, 1, d=16, h=64, w=64, 3)
33
+ coordinate_grid = identity_grid - kp_driving.view(bs, self.num_kp, 1, 1, 1, 3)
34
+
35
+ k = coordinate_grid.shape[1]
36
+
37
+ # NOTE: there lacks an one-order flow
38
+ driving_to_source = coordinate_grid + kp_source.view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3)
39
+
40
+ # adding background feature
41
+ identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1)
42
+ sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) # (bs, 1+num_kp, d, h, w, 3)
43
+ return sparse_motions
44
+
45
+ def create_deformed_feature(self, feature, sparse_motions):
46
+ bs, _, d, h, w = feature.shape
47
+ feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w)
48
+ feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w)
49
+ sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3)
50
+ sparse_deformed = F.grid_sample(feature_repeat, sparse_motions, align_corners=False)
51
+ sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w)
52
+
53
+ return sparse_deformed
54
+
55
+ def create_heatmap_representations(self, feature, kp_driving, kp_source):
56
+ spatial_size = feature.shape[3:] # (d=16, h=64, w=64)
57
+ gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
58
+ gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
59
+ heatmap = gaussian_driving - gaussian_source # (bs, num_kp, d, h, w)
60
+
61
+ # adding background feature
62
+ zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type()).to(heatmap.device)
63
+ heatmap = torch.cat([zeros, heatmap], dim=1)
64
+ heatmap = heatmap.unsqueeze(2) # (bs, 1+num_kp, 1, d, h, w)
65
+ return heatmap
66
+
67
+ def forward(self, feature, kp_driving, kp_source):
68
+ bs, _, d, h, w = feature.shape # (bs, 32, 16, 64, 64)
69
+
70
+ feature = self.compress(feature) # (bs, 4, 16, 64, 64)
71
+ feature = self.norm(feature) # (bs, 4, 16, 64, 64)
72
+ feature = F.relu(feature) # (bs, 4, 16, 64, 64)
73
+
74
+ out_dict = dict()
75
+
76
+ # 1. deform 3d feature
77
+ sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source) # (bs, 1+num_kp, d, h, w, 3)
78
+ deformed_feature = self.create_deformed_feature(feature, sparse_motion) # (bs, 1+num_kp, c=4, d=16, h=64, w=64)
79
+
80
+ # 2. (bs, 1+num_kp, d, h, w)
81
+ heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source) # (bs, 1+num_kp, 1, d, h, w)
82
+
83
+ input = torch.cat([heatmap, deformed_feature], dim=2) # (bs, 1+num_kp, c=5, d=16, h=64, w=64)
84
+ input = input.view(bs, -1, d, h, w) # (bs, (1+num_kp)*c=105, d=16, h=64, w=64)
85
+
86
+ prediction = self.hourglass(input)
87
+
88
+ mask = self.mask(prediction)
89
+ mask = F.softmax(mask, dim=1) # (bs, 1+num_kp, d=16, h=64, w=64)
90
+ out_dict['mask'] = mask
91
+ mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w)
92
+ sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w)
93
+ deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w) mask take effect in this place
94
+ deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3)
95
+
96
+ out_dict['deformation'] = deformation
97
+
98
+ if self.flag_estimate_occlusion_map:
99
+ bs, _, d, h, w = prediction.shape
100
+ prediction_reshape = prediction.view(bs, -1, h, w)
101
+ occlusion_map = torch.sigmoid(self.occlusion(prediction_reshape)) # Bx1x64x64
102
+ out_dict['occlusion_map'] = occlusion_map
103
+
104
+ return out_dict
src/modules/motion_extractor.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Motion extractor(M), which directly predicts the canonical keypoints, head pose and expression deformation of the input image
5
+ """
6
+
7
+ from torch import nn
8
+ import torch
9
+
10
+ from .convnextv2 import convnextv2_tiny
11
+ from .util import filter_state_dict
12
+
13
+ model_dict = {
14
+ 'convnextv2_tiny': convnextv2_tiny,
15
+ }
16
+
17
+
18
+ class MotionExtractor(nn.Module):
19
+ def __init__(self, **kwargs):
20
+ super(MotionExtractor, self).__init__()
21
+
22
+ # default is convnextv2_base
23
+ backbone = kwargs.get('backbone', 'convnextv2_tiny')
24
+ self.detector = model_dict.get(backbone)(**kwargs)
25
+
26
+ def load_pretrained(self, init_path: str):
27
+ if init_path not in (None, ''):
28
+ state_dict = torch.load(init_path, map_location=lambda storage, loc: storage)['model']
29
+ state_dict = filter_state_dict(state_dict, remove_name='head')
30
+ ret = self.detector.load_state_dict(state_dict, strict=False)
31
+ print(f'Load pretrained model from {init_path}, ret: {ret}')
32
+
33
+ def forward(self, x):
34
+ out = self.detector(x)
35
+ return out
src/modules/spade_generator.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Spade decoder(G) defined in the paper, which input the warped feature to generate the animated image.
5
+ """
6
+
7
+ import torch
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ from .util import SPADEResnetBlock
11
+
12
+
13
+ class SPADEDecoder(nn.Module):
14
+ def __init__(self, upscale=1, max_features=256, block_expansion=64, out_channels=64, num_down_blocks=2):
15
+ for i in range(num_down_blocks):
16
+ input_channels = min(max_features, block_expansion * (2 ** (i + 1)))
17
+ self.upscale = upscale
18
+ super().__init__()
19
+ norm_G = 'spadespectralinstance'
20
+ label_num_channels = input_channels # 256
21
+
22
+ self.fc = nn.Conv2d(input_channels, 2 * input_channels, 3, padding=1)
23
+ self.G_middle_0 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
24
+ self.G_middle_1 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
25
+ self.G_middle_2 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
26
+ self.G_middle_3 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
27
+ self.G_middle_4 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
28
+ self.G_middle_5 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
29
+ self.up_0 = SPADEResnetBlock(2 * input_channels, input_channels, norm_G, label_num_channels)
30
+ self.up_1 = SPADEResnetBlock(input_channels, out_channels, norm_G, label_num_channels)
31
+ self.up = nn.Upsample(scale_factor=2)
32
+
33
+ if self.upscale is None or self.upscale <= 1:
34
+ self.conv_img = nn.Conv2d(out_channels, 3, 3, padding=1)
35
+ else:
36
+ self.conv_img = nn.Sequential(
37
+ nn.Conv2d(out_channels, 3 * (2 * 2), kernel_size=3, padding=1),
38
+ nn.PixelShuffle(upscale_factor=2)
39
+ )
40
+
41
+ def forward(self, feature):
42
+ seg = feature # Bx256x64x64
43
+ x = self.fc(feature) # Bx512x64x64
44
+ x = self.G_middle_0(x, seg)
45
+ x = self.G_middle_1(x, seg)
46
+ x = self.G_middle_2(x, seg)
47
+ x = self.G_middle_3(x, seg)
48
+ x = self.G_middle_4(x, seg)
49
+ x = self.G_middle_5(x, seg)
50
+
51
+ x = self.up(x) # Bx512x64x64 -> Bx512x128x128
52
+ x = self.up_0(x, seg) # Bx512x128x128 -> Bx256x128x128
53
+ x = self.up(x) # Bx256x128x128 -> Bx256x256x256
54
+ x = self.up_1(x, seg) # Bx256x256x256 -> Bx64x256x256
55
+
56
+ x = self.conv_img(F.leaky_relu(x, 2e-1)) # Bx64x256x256 -> Bx3xHxW
57
+ x = torch.sigmoid(x) # Bx3xHxW
58
+
59
+ return x
src/modules/stitching_retargeting_network.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Stitching module(S) and two retargeting modules(R) defined in the paper.
5
+
6
+ - The stitching module pastes the animated portrait back into the original image space without pixel misalignment, such as in
7
+ the stitching region.
8
+
9
+ - The eyes retargeting module is designed to address the issue of incomplete eye closure during cross-id reenactment, especially
10
+ when a person with small eyes drives a person with larger eyes.
11
+
12
+ - The lip retargeting module is designed similarly to the eye retargeting module, and can also normalize the input by ensuring that
13
+ the lips are in a closed state, which facilitates better animation driving.
14
+ """
15
+ from torch import nn
16
+
17
+
18
+ class StitchingRetargetingNetwork(nn.Module):
19
+ def __init__(self, input_size, hidden_sizes, output_size):
20
+ super(StitchingRetargetingNetwork, self).__init__()
21
+ layers = []
22
+ for i in range(len(hidden_sizes)):
23
+ if i == 0:
24
+ layers.append(nn.Linear(input_size, hidden_sizes[i]))
25
+ else:
26
+ layers.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
27
+ layers.append(nn.ReLU(inplace=True))
28
+ layers.append(nn.Linear(hidden_sizes[-1], output_size))
29
+ self.mlp = nn.Sequential(*layers)
30
+
31
+ def initialize_weights_to_zero(self):
32
+ for m in self.modules():
33
+ if isinstance(m, nn.Linear):
34
+ nn.init.zeros_(m.weight)
35
+ nn.init.zeros_(m.bias)
36
+
37
+ def forward(self, x):
38
+ return self.mlp(x)
src/modules/util.py ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ This file defines various neural network modules and utility functions, including convolutional and residual blocks,
5
+ normalizations, and functions for spatial transformation and tensor manipulation.
6
+ """
7
+
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ import torch
11
+ import torch.nn.utils.spectral_norm as spectral_norm
12
+ import math
13
+ import warnings
14
+
15
+
16
+ def kp2gaussian(kp, spatial_size, kp_variance):
17
+ """
18
+ Transform a keypoint into gaussian like representation
19
+ """
20
+ mean = kp
21
+
22
+ coordinate_grid = make_coordinate_grid(spatial_size, mean)
23
+ number_of_leading_dimensions = len(mean.shape) - 1
24
+ shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
25
+ coordinate_grid = coordinate_grid.view(*shape)
26
+ repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
27
+ coordinate_grid = coordinate_grid.repeat(*repeats)
28
+
29
+ # Preprocess kp shape
30
+ shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
31
+ mean = mean.view(*shape)
32
+
33
+ mean_sub = (coordinate_grid - mean)
34
+
35
+ out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
36
+
37
+ return out
38
+
39
+
40
+ def make_coordinate_grid(spatial_size, ref, **kwargs):
41
+ d, h, w = spatial_size
42
+ x = torch.arange(w).type(ref.dtype).to(ref.device)
43
+ y = torch.arange(h).type(ref.dtype).to(ref.device)
44
+ z = torch.arange(d).type(ref.dtype).to(ref.device)
45
+
46
+ # NOTE: must be right-down-in
47
+ x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right
48
+ y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom
49
+ z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner
50
+
51
+ yy = y.view(1, -1, 1).repeat(d, 1, w)
52
+ xx = x.view(1, 1, -1).repeat(d, h, 1)
53
+ zz = z.view(-1, 1, 1).repeat(1, h, w)
54
+
55
+ meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
56
+
57
+ return meshed
58
+
59
+
60
+ class ConvT2d(nn.Module):
61
+ """
62
+ Upsampling block for use in decoder.
63
+ """
64
+
65
+ def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1):
66
+ super(ConvT2d, self).__init__()
67
+
68
+ self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride,
69
+ padding=padding, output_padding=output_padding)
70
+ self.norm = nn.InstanceNorm2d(out_features)
71
+
72
+ def forward(self, x):
73
+ out = self.convT(x)
74
+ out = self.norm(out)
75
+ out = F.leaky_relu(out)
76
+ return out
77
+
78
+
79
+ class ResBlock3d(nn.Module):
80
+ """
81
+ Res block, preserve spatial resolution.
82
+ """
83
+
84
+ def __init__(self, in_features, kernel_size, padding):
85
+ super(ResBlock3d, self).__init__()
86
+ self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
87
+ self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
88
+ self.norm1 = nn.BatchNorm3d(in_features, affine=True)
89
+ self.norm2 = nn.BatchNorm3d(in_features, affine=True)
90
+
91
+ def forward(self, x):
92
+ out = self.norm1(x)
93
+ out = F.relu(out)
94
+ out = self.conv1(out)
95
+ out = self.norm2(out)
96
+ out = F.relu(out)
97
+ out = self.conv2(out)
98
+ out += x
99
+ return out
100
+
101
+
102
+ class UpBlock3d(nn.Module):
103
+ """
104
+ Upsampling block for use in decoder.
105
+ """
106
+
107
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
108
+ super(UpBlock3d, self).__init__()
109
+
110
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
111
+ padding=padding, groups=groups)
112
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
113
+
114
+ def forward(self, x):
115
+ out = F.interpolate(x, scale_factor=(1, 2, 2))
116
+ out = self.conv(out)
117
+ out = self.norm(out)
118
+ out = F.relu(out)
119
+ return out
120
+
121
+
122
+ class DownBlock2d(nn.Module):
123
+ """
124
+ Downsampling block for use in encoder.
125
+ """
126
+
127
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
128
+ super(DownBlock2d, self).__init__()
129
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
130
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
131
+ self.pool = nn.AvgPool2d(kernel_size=(2, 2))
132
+
133
+ def forward(self, x):
134
+ out = self.conv(x)
135
+ out = self.norm(out)
136
+ out = F.relu(out)
137
+ out = self.pool(out)
138
+ return out
139
+
140
+
141
+ class DownBlock3d(nn.Module):
142
+ """
143
+ Downsampling block for use in encoder.
144
+ """
145
+
146
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
147
+ super(DownBlock3d, self).__init__()
148
+ '''
149
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
150
+ padding=padding, groups=groups, stride=(1, 2, 2))
151
+ '''
152
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
153
+ padding=padding, groups=groups)
154
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
155
+ self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
156
+
157
+ def forward(self, x):
158
+ out = self.conv(x)
159
+ out = self.norm(out)
160
+ out = F.relu(out)
161
+ out = self.pool(out)
162
+ return out
163
+
164
+
165
+ class SameBlock2d(nn.Module):
166
+ """
167
+ Simple block, preserve spatial resolution.
168
+ """
169
+
170
+ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
171
+ super(SameBlock2d, self).__init__()
172
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
173
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
174
+ if lrelu:
175
+ self.ac = nn.LeakyReLU()
176
+ else:
177
+ self.ac = nn.ReLU()
178
+
179
+ def forward(self, x):
180
+ out = self.conv(x)
181
+ out = self.norm(out)
182
+ out = self.ac(out)
183
+ return out
184
+
185
+
186
+ class Encoder(nn.Module):
187
+ """
188
+ Hourglass Encoder
189
+ """
190
+
191
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
192
+ super(Encoder, self).__init__()
193
+
194
+ down_blocks = []
195
+ for i in range(num_blocks):
196
+ down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1))
197
+ self.down_blocks = nn.ModuleList(down_blocks)
198
+
199
+ def forward(self, x):
200
+ outs = [x]
201
+ for down_block in self.down_blocks:
202
+ outs.append(down_block(outs[-1]))
203
+ return outs
204
+
205
+
206
+ class Decoder(nn.Module):
207
+ """
208
+ Hourglass Decoder
209
+ """
210
+
211
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
212
+ super(Decoder, self).__init__()
213
+
214
+ up_blocks = []
215
+
216
+ for i in range(num_blocks)[::-1]:
217
+ in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
218
+ out_filters = min(max_features, block_expansion * (2 ** i))
219
+ up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
220
+
221
+ self.up_blocks = nn.ModuleList(up_blocks)
222
+ self.out_filters = block_expansion + in_features
223
+
224
+ self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
225
+ self.norm = nn.BatchNorm3d(self.out_filters, affine=True)
226
+
227
+ def forward(self, x):
228
+ out = x.pop()
229
+ for up_block in self.up_blocks:
230
+ out = up_block(out)
231
+ skip = x.pop()
232
+ out = torch.cat([out, skip], dim=1)
233
+ out = self.conv(out)
234
+ out = self.norm(out)
235
+ out = F.relu(out)
236
+ return out
237
+
238
+
239
+ class Hourglass(nn.Module):
240
+ """
241
+ Hourglass architecture.
242
+ """
243
+
244
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
245
+ super(Hourglass, self).__init__()
246
+ self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
247
+ self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
248
+ self.out_filters = self.decoder.out_filters
249
+
250
+ def forward(self, x):
251
+ return self.decoder(self.encoder(x))
252
+
253
+
254
+ class SPADE(nn.Module):
255
+ def __init__(self, norm_nc, label_nc):
256
+ super().__init__()
257
+
258
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
259
+ nhidden = 128
260
+
261
+ self.mlp_shared = nn.Sequential(
262
+ nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
263
+ nn.ReLU())
264
+ self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
265
+ self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
266
+
267
+ def forward(self, x, segmap):
268
+ normalized = self.param_free_norm(x)
269
+ segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
270
+ actv = self.mlp_shared(segmap)
271
+ gamma = self.mlp_gamma(actv)
272
+ beta = self.mlp_beta(actv)
273
+ out = normalized * (1 + gamma) + beta
274
+ return out
275
+
276
+
277
+ class SPADEResnetBlock(nn.Module):
278
+ def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
279
+ super().__init__()
280
+ # Attributes
281
+ self.learned_shortcut = (fin != fout)
282
+ fmiddle = min(fin, fout)
283
+ self.use_se = use_se
284
+ # create conv layers
285
+ self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
286
+ self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
287
+ if self.learned_shortcut:
288
+ self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
289
+ # apply spectral norm if specified
290
+ if 'spectral' in norm_G:
291
+ self.conv_0 = spectral_norm(self.conv_0)
292
+ self.conv_1 = spectral_norm(self.conv_1)
293
+ if self.learned_shortcut:
294
+ self.conv_s = spectral_norm(self.conv_s)
295
+ # define normalization layers
296
+ self.norm_0 = SPADE(fin, label_nc)
297
+ self.norm_1 = SPADE(fmiddle, label_nc)
298
+ if self.learned_shortcut:
299
+ self.norm_s = SPADE(fin, label_nc)
300
+
301
+ def forward(self, x, seg1):
302
+ x_s = self.shortcut(x, seg1)
303
+ dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
304
+ dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
305
+ out = x_s + dx
306
+ return out
307
+
308
+ def shortcut(self, x, seg1):
309
+ if self.learned_shortcut:
310
+ x_s = self.conv_s(self.norm_s(x, seg1))
311
+ else:
312
+ x_s = x
313
+ return x_s
314
+
315
+ def actvn(self, x):
316
+ return F.leaky_relu(x, 2e-1)
317
+
318
+
319
+ def filter_state_dict(state_dict, remove_name='fc'):
320
+ new_state_dict = {}
321
+ for key in state_dict:
322
+ if remove_name in key:
323
+ continue
324
+ new_state_dict[key] = state_dict[key]
325
+ return new_state_dict
326
+
327
+
328
+ class GRN(nn.Module):
329
+ """ GRN (Global Response Normalization) layer
330
+ """
331
+
332
+ def __init__(self, dim):
333
+ super().__init__()
334
+ self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
335
+ self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
336
+
337
+ def forward(self, x):
338
+ Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
339
+ Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
340
+ return self.gamma * (x * Nx) + self.beta + x
341
+
342
+
343
+ class LayerNorm(nn.Module):
344
+ r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
345
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
346
+ shape (batch_size, height, width, channels) while channels_first corresponds to inputs
347
+ with shape (batch_size, channels, height, width).
348
+ """
349
+
350
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
351
+ super().__init__()
352
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
353
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
354
+ self.eps = eps
355
+ self.data_format = data_format
356
+ if self.data_format not in ["channels_last", "channels_first"]:
357
+ raise NotImplementedError
358
+ self.normalized_shape = (normalized_shape, )
359
+
360
+ def forward(self, x):
361
+ if self.data_format == "channels_last":
362
+ return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
363
+ elif self.data_format == "channels_first":
364
+ u = x.mean(1, keepdim=True)
365
+ s = (x - u).pow(2).mean(1, keepdim=True)
366
+ x = (x - u) / torch.sqrt(s + self.eps)
367
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
368
+ return x
369
+
370
+
371
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
372
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
373
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
374
+ def norm_cdf(x):
375
+ # Computes standard normal cumulative distribution function
376
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
377
+
378
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
379
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
380
+ "The distribution of values may be incorrect.",
381
+ stacklevel=2)
382
+
383
+ with torch.no_grad():
384
+ # Values are generated by using a truncated uniform distribution and
385
+ # then using the inverse CDF for the normal distribution.
386
+ # Get upper and lower cdf values
387
+ l = norm_cdf((a - mean) / std)
388
+ u = norm_cdf((b - mean) / std)
389
+
390
+ # Uniformly fill tensor with values from [l, u], then translate to
391
+ # [2l-1, 2u-1].
392
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
393
+
394
+ # Use inverse cdf transform for normal distribution to get truncated
395
+ # standard normal
396
+ tensor.erfinv_()
397
+
398
+ # Transform to proper mean, std
399
+ tensor.mul_(std * math.sqrt(2.))
400
+ tensor.add_(mean)
401
+
402
+ # Clamp to ensure it's in the proper range
403
+ tensor.clamp_(min=a, max=b)
404
+ return tensor
405
+
406
+
407
+ def drop_path(x, drop_prob=0., training=False, scale_by_keep=True):
408
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
409
+
410
+ This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
411
+ the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
412
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
413
+ changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
414
+ 'survival rate' as the argument.
415
+
416
+ """
417
+ if drop_prob == 0. or not training:
418
+ return x
419
+ keep_prob = 1 - drop_prob
420
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
421
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
422
+ if keep_prob > 0.0 and scale_by_keep:
423
+ random_tensor.div_(keep_prob)
424
+ return x * random_tensor
425
+
426
+
427
+ class DropPath(nn.Module):
428
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
429
+ """
430
+
431
+ def __init__(self, drop_prob=None, scale_by_keep=True):
432
+ super(DropPath, self).__init__()
433
+ self.drop_prob = drop_prob
434
+ self.scale_by_keep = scale_by_keep
435
+
436
+ def forward(self, x):
437
+ return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
438
+
439
+
440
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
441
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
src/modules/warping_network.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Warping field estimator(W) defined in the paper, which generates a warping field using the implicit
5
+ keypoint representations x_s and x_d, and employs this flow field to warp the source feature volume f_s.
6
+ """
7
+
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ from .util import SameBlock2d
11
+ from .dense_motion import DenseMotionNetwork
12
+
13
+
14
+ class WarpingNetwork(nn.Module):
15
+ def __init__(
16
+ self,
17
+ num_kp,
18
+ block_expansion,
19
+ max_features,
20
+ num_down_blocks,
21
+ reshape_channel,
22
+ estimate_occlusion_map=False,
23
+ dense_motion_params=None,
24
+ **kwargs
25
+ ):
26
+ super(WarpingNetwork, self).__init__()
27
+
28
+ self.upscale = kwargs.get('upscale', 1)
29
+ self.flag_use_occlusion_map = kwargs.get('flag_use_occlusion_map', True)
30
+
31
+ if dense_motion_params is not None:
32
+ self.dense_motion_network = DenseMotionNetwork(
33
+ num_kp=num_kp,
34
+ feature_channel=reshape_channel,
35
+ estimate_occlusion_map=estimate_occlusion_map,
36
+ **dense_motion_params
37
+ )
38
+ else:
39
+ self.dense_motion_network = None
40
+
41
+ self.third = SameBlock2d(max_features, block_expansion * (2 ** num_down_blocks), kernel_size=(3, 3), padding=(1, 1), lrelu=True)
42
+ self.fourth = nn.Conv2d(in_channels=block_expansion * (2 ** num_down_blocks), out_channels=block_expansion * (2 ** num_down_blocks), kernel_size=1, stride=1)
43
+
44
+ self.estimate_occlusion_map = estimate_occlusion_map
45
+
46
+ def deform_input(self, inp, deformation):
47
+ return F.grid_sample(inp, deformation, align_corners=False)
48
+
49
+ def forward(self, feature_3d, kp_driving, kp_source):
50
+ if self.dense_motion_network is not None:
51
+ # Feature warper, Transforming feature representation according to deformation and occlusion
52
+ dense_motion = self.dense_motion_network(
53
+ feature=feature_3d, kp_driving=kp_driving, kp_source=kp_source
54
+ )
55
+ if 'occlusion_map' in dense_motion:
56
+ occlusion_map = dense_motion['occlusion_map'] # Bx1x64x64
57
+ else:
58
+ occlusion_map = None
59
+
60
+ deformation = dense_motion['deformation'] # Bx16x64x64x3
61
+ out = self.deform_input(feature_3d, deformation) # Bx32x16x64x64
62
+
63
+ bs, c, d, h, w = out.shape # Bx32x16x64x64
64
+ out = out.view(bs, c * d, h, w) # -> Bx512x64x64
65
+ out = self.third(out) # -> Bx256x64x64
66
+ out = self.fourth(out) # -> Bx256x64x64
67
+
68
+ if self.flag_use_occlusion_map and (occlusion_map is not None):
69
+ out = out * occlusion_map
70
+
71
+ ret_dct = {
72
+ 'occlusion_map': occlusion_map,
73
+ 'deformation': deformation,
74
+ 'out': out,
75
+ }
76
+
77
+ return ret_dct
src/utils/__init__.py ADDED
File without changes
src/utils/camera.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ functions for processing and transforming 3D facial keypoints
5
+ """
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn.functional as F
10
+
11
+ PI = np.pi
12
+
13
+
14
+ def headpose_pred_to_degree(pred):
15
+ """
16
+ pred: (bs, 66) or (bs, 1) or others
17
+ """
18
+ if pred.ndim > 1 and pred.shape[1] == 66:
19
+ # NOTE: note that the average is modified to 97.5
20
+ device = pred.device
21
+ idx_tensor = [idx for idx in range(0, 66)]
22
+ idx_tensor = torch.FloatTensor(idx_tensor).to(device)
23
+ pred = F.softmax(pred, dim=1)
24
+ degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 97.5
25
+
26
+ return degree
27
+
28
+ return pred
29
+
30
+
31
+ def get_rotation_matrix(pitch_, yaw_, roll_):
32
+ """ the input is in degree
33
+ """
34
+ # transform to radian
35
+ pitch = pitch_ / 180 * PI
36
+ yaw = yaw_ / 180 * PI
37
+ roll = roll_ / 180 * PI
38
+
39
+ device = pitch.device
40
+
41
+ if pitch.ndim == 1:
42
+ pitch = pitch.unsqueeze(1)
43
+ if yaw.ndim == 1:
44
+ yaw = yaw.unsqueeze(1)
45
+ if roll.ndim == 1:
46
+ roll = roll.unsqueeze(1)
47
+
48
+ # calculate the euler matrix
49
+ bs = pitch.shape[0]
50
+ ones = torch.ones([bs, 1]).to(device)
51
+ zeros = torch.zeros([bs, 1]).to(device)
52
+ x, y, z = pitch, yaw, roll
53
+
54
+ rot_x = torch.cat([
55
+ ones, zeros, zeros,
56
+ zeros, torch.cos(x), -torch.sin(x),
57
+ zeros, torch.sin(x), torch.cos(x)
58
+ ], dim=1).reshape([bs, 3, 3])
59
+
60
+ rot_y = torch.cat([
61
+ torch.cos(y), zeros, torch.sin(y),
62
+ zeros, ones, zeros,
63
+ -torch.sin(y), zeros, torch.cos(y)
64
+ ], dim=1).reshape([bs, 3, 3])
65
+
66
+ rot_z = torch.cat([
67
+ torch.cos(z), -torch.sin(z), zeros,
68
+ torch.sin(z), torch.cos(z), zeros,
69
+ zeros, zeros, ones
70
+ ], dim=1).reshape([bs, 3, 3])
71
+
72
+ rot = rot_z @ rot_y @ rot_x
73
+ return rot.permute(0, 2, 1) # transpose
src/utils/crop.py ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ cropping function and the related preprocess functions for cropping
5
+ """
6
+
7
+ import numpy as np
8
+ import os.path as osp
9
+ from math import sin, cos, acos, degrees
10
+ import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) # NOTE: enforce single thread
11
+ from .rprint import rprint as print
12
+
13
+ DTYPE = np.float32
14
+ CV2_INTERP = cv2.INTER_LINEAR
15
+
16
+ def make_abs_path(fn):
17
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
18
+
19
+ def _transform_img(img, M, dsize, flags=CV2_INTERP, borderMode=None):
20
+ """ conduct similarity or affine transformation to the image, do not do border operation!
21
+ img:
22
+ M: 2x3 matrix or 3x3 matrix
23
+ dsize: target shape (width, height)
24
+ """
25
+ if isinstance(dsize, tuple) or isinstance(dsize, list):
26
+ _dsize = tuple(dsize)
27
+ else:
28
+ _dsize = (dsize, dsize)
29
+
30
+ if borderMode is not None:
31
+ return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0))
32
+ else:
33
+ return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags)
34
+
35
+
36
+ def _transform_pts(pts, M):
37
+ """ conduct similarity or affine transformation to the pts
38
+ pts: Nx2 ndarray
39
+ M: 2x3 matrix or 3x3 matrix
40
+ return: Nx2
41
+ """
42
+ return pts @ M[:2, :2].T + M[:2, 2]
43
+
44
+
45
+ def parse_pt2_from_pt101(pt101, use_lip=True):
46
+ """
47
+ parsing the 2 points according to the 101 points, which cancels the roll
48
+ """
49
+ # the former version use the eye center, but it is not robust, now use interpolation
50
+ pt_left_eye = np.mean(pt101[[39, 42, 45, 48]], axis=0) # left eye center
51
+ pt_right_eye = np.mean(pt101[[51, 54, 57, 60]], axis=0) # right eye center
52
+
53
+ if use_lip:
54
+ # use lip
55
+ pt_center_eye = (pt_left_eye + pt_right_eye) / 2
56
+ pt_center_lip = (pt101[75] + pt101[81]) / 2
57
+ pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
58
+ else:
59
+ pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
60
+ return pt2
61
+
62
+
63
+ def parse_pt2_from_pt106(pt106, use_lip=True):
64
+ """
65
+ parsing the 2 points according to the 106 points, which cancels the roll
66
+ """
67
+ pt_left_eye = np.mean(pt106[[33, 35, 40, 39]], axis=0) # left eye center
68
+ pt_right_eye = np.mean(pt106[[87, 89, 94, 93]], axis=0) # right eye center
69
+
70
+ if use_lip:
71
+ # use lip
72
+ pt_center_eye = (pt_left_eye + pt_right_eye) / 2
73
+ pt_center_lip = (pt106[52] + pt106[61]) / 2
74
+ pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
75
+ else:
76
+ pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
77
+ return pt2
78
+
79
+
80
+ def parse_pt2_from_pt203(pt203, use_lip=True):
81
+ """
82
+ parsing the 2 points according to the 203 points, which cancels the roll
83
+ """
84
+ pt_left_eye = np.mean(pt203[[0, 6, 12, 18]], axis=0) # left eye center
85
+ pt_right_eye = np.mean(pt203[[24, 30, 36, 42]], axis=0) # right eye center
86
+ if use_lip:
87
+ # use lip
88
+ pt_center_eye = (pt_left_eye + pt_right_eye) / 2
89
+ pt_center_lip = (pt203[48] + pt203[66]) / 2
90
+ pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
91
+ else:
92
+ pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
93
+ return pt2
94
+
95
+
96
+ def parse_pt2_from_pt68(pt68, use_lip=True):
97
+ """
98
+ parsing the 2 points according to the 68 points, which cancels the roll
99
+ """
100
+ lm_idx = np.array([31, 37, 40, 43, 46, 49, 55], dtype=np.int32) - 1
101
+ if use_lip:
102
+ pt5 = np.stack([
103
+ np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye
104
+ np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye
105
+ pt68[lm_idx[0], :], # nose
106
+ pt68[lm_idx[5], :], # lip
107
+ pt68[lm_idx[6], :] # lip
108
+ ], axis=0)
109
+
110
+ pt2 = np.stack([
111
+ (pt5[0] + pt5[1]) / 2,
112
+ (pt5[3] + pt5[4]) / 2
113
+ ], axis=0)
114
+ else:
115
+ pt2 = np.stack([
116
+ np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye
117
+ np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye
118
+ ], axis=0)
119
+
120
+ return pt2
121
+
122
+
123
+ def parse_pt2_from_pt5(pt5, use_lip=True):
124
+ """
125
+ parsing the 2 points according to the 5 points, which cancels the roll
126
+ """
127
+ if use_lip:
128
+ pt2 = np.stack([
129
+ (pt5[0] + pt5[1]) / 2,
130
+ (pt5[3] + pt5[4]) / 2
131
+ ], axis=0)
132
+ else:
133
+ pt2 = np.stack([
134
+ pt5[0],
135
+ pt5[1]
136
+ ], axis=0)
137
+ return pt2
138
+
139
+
140
+ def parse_pt2_from_pt_x(pts, use_lip=True):
141
+ if pts.shape[0] == 101:
142
+ pt2 = parse_pt2_from_pt101(pts, use_lip=use_lip)
143
+ elif pts.shape[0] == 106:
144
+ pt2 = parse_pt2_from_pt106(pts, use_lip=use_lip)
145
+ elif pts.shape[0] == 68:
146
+ pt2 = parse_pt2_from_pt68(pts, use_lip=use_lip)
147
+ elif pts.shape[0] == 5:
148
+ pt2 = parse_pt2_from_pt5(pts, use_lip=use_lip)
149
+ elif pts.shape[0] == 203:
150
+ pt2 = parse_pt2_from_pt203(pts, use_lip=use_lip)
151
+ elif pts.shape[0] > 101:
152
+ # take the first 101 points
153
+ pt2 = parse_pt2_from_pt101(pts[:101], use_lip=use_lip)
154
+ else:
155
+ raise Exception(f'Unknow shape: {pts.shape}')
156
+
157
+ if not use_lip:
158
+ # NOTE: to compile with the latter code, need to rotate the pt2 90 degrees clockwise manually
159
+ v = pt2[1] - pt2[0]
160
+ pt2[1, 0] = pt2[0, 0] - v[1]
161
+ pt2[1, 1] = pt2[0, 1] + v[0]
162
+
163
+ return pt2
164
+
165
+
166
+ def parse_rect_from_landmark(
167
+ pts,
168
+ scale=1.5,
169
+ need_square=True,
170
+ vx_ratio=0,
171
+ vy_ratio=0,
172
+ use_deg_flag=False,
173
+ **kwargs
174
+ ):
175
+ """parsing center, size, angle from 101/68/5/x landmarks
176
+ vx_ratio: the offset ratio along the pupil axis x-axis, multiplied by size
177
+ vy_ratio: the offset ratio along the pupil axis y-axis, multiplied by size, which is used to contain more forehead area
178
+
179
+ judge with pts.shape
180
+ """
181
+ pt2 = parse_pt2_from_pt_x(pts, use_lip=kwargs.get('use_lip', True))
182
+
183
+ uy = pt2[1] - pt2[0]
184
+ l = np.linalg.norm(uy)
185
+ if l <= 1e-3:
186
+ uy = np.array([0, 1], dtype=DTYPE)
187
+ else:
188
+ uy /= l
189
+ ux = np.array((uy[1], -uy[0]), dtype=DTYPE)
190
+
191
+ # the rotation degree of the x-axis, the clockwise is positive, the counterclockwise is negative (image coordinate system)
192
+ # print(uy)
193
+ # print(ux)
194
+ angle = acos(ux[0])
195
+ if ux[1] < 0:
196
+ angle = -angle
197
+
198
+ # rotation matrix
199
+ M = np.array([ux, uy])
200
+
201
+ # calculate the size which contains the angle degree of the bbox, and the center
202
+ center0 = np.mean(pts, axis=0)
203
+ rpts = (pts - center0) @ M.T # (M @ P.T).T = P @ M.T
204
+ lt_pt = np.min(rpts, axis=0)
205
+ rb_pt = np.max(rpts, axis=0)
206
+ center1 = (lt_pt + rb_pt) / 2
207
+
208
+ size = rb_pt - lt_pt
209
+ if need_square:
210
+ m = max(size[0], size[1])
211
+ size[0] = m
212
+ size[1] = m
213
+
214
+ size *= scale # scale size
215
+ center = center0 + ux * center1[0] + uy * center1[1] # counterclockwise rotation, equivalent to M.T @ center1.T
216
+ center = center + ux * (vx_ratio * size) + uy * \
217
+ (vy_ratio * size) # considering the offset in vx and vy direction
218
+
219
+ if use_deg_flag:
220
+ angle = degrees(angle)
221
+
222
+ return center, size, angle
223
+
224
+
225
+ def parse_bbox_from_landmark(pts, **kwargs):
226
+ center, size, angle = parse_rect_from_landmark(pts, **kwargs)
227
+ cx, cy = center
228
+ w, h = size
229
+
230
+ # calculate the vertex positions before rotation
231
+ bbox = np.array([
232
+ [cx-w/2, cy-h/2], # left, top
233
+ [cx+w/2, cy-h/2],
234
+ [cx+w/2, cy+h/2], # right, bottom
235
+ [cx-w/2, cy+h/2]
236
+ ], dtype=DTYPE)
237
+
238
+ # construct rotation matrix
239
+ bbox_rot = bbox.copy()
240
+ R = np.array([
241
+ [np.cos(angle), -np.sin(angle)],
242
+ [np.sin(angle), np.cos(angle)]
243
+ ], dtype=DTYPE)
244
+
245
+ # calculate the relative position of each vertex from the rotation center, then rotate these positions, and finally add the coordinates of the rotation center
246
+ bbox_rot = (bbox_rot - center) @ R.T + center
247
+
248
+ return {
249
+ 'center': center, # 2x1
250
+ 'size': size, # scalar
251
+ 'angle': angle, # rad, counterclockwise
252
+ 'bbox': bbox, # 4x2
253
+ 'bbox_rot': bbox_rot, # 4x2
254
+ }
255
+
256
+
257
+ def crop_image_by_bbox(img, bbox, lmk=None, dsize=512, angle=None, flag_rot=False, **kwargs):
258
+ left, top, right, bot = bbox
259
+ if int(right - left) != int(bot - top):
260
+ print(f'right-left {right-left} != bot-top {bot-top}')
261
+ size = right - left
262
+
263
+ src_center = np.array([(left + right) / 2, (top + bot) / 2], dtype=DTYPE)
264
+ tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE)
265
+
266
+ s = dsize / size # scale
267
+ if flag_rot and angle is not None:
268
+ costheta, sintheta = cos(angle), sin(angle)
269
+ cx, cy = src_center[0], src_center[1] # ori center
270
+ tcx, tcy = tgt_center[0], tgt_center[1] # target center
271
+ # need to infer
272
+ M_o2c = np.array(
273
+ [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
274
+ [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
275
+ dtype=DTYPE
276
+ )
277
+ else:
278
+ M_o2c = np.array(
279
+ [[s, 0, tgt_center[0] - s * src_center[0]],
280
+ [0, s, tgt_center[1] - s * src_center[1]]],
281
+ dtype=DTYPE
282
+ )
283
+
284
+ # if flag_rot and angle is None:
285
+ # print('angle is None, but flag_rotate is True', style="bold yellow")
286
+
287
+ img_crop = _transform_img(img, M_o2c, dsize=dsize, borderMode=kwargs.get('borderMode', None))
288
+ lmk_crop = _transform_pts(lmk, M_o2c) if lmk is not None else None
289
+
290
+ M_o2c = np.vstack([M_o2c, np.array([0, 0, 1], dtype=DTYPE)])
291
+ M_c2o = np.linalg.inv(M_o2c)
292
+
293
+ # cv2.imwrite('crop.jpg', img_crop)
294
+
295
+ return {
296
+ 'img_crop': img_crop,
297
+ 'lmk_crop': lmk_crop,
298
+ 'M_o2c': M_o2c,
299
+ 'M_c2o': M_c2o,
300
+ }
301
+
302
+
303
+ def _estimate_similar_transform_from_pts(
304
+ pts,
305
+ dsize,
306
+ scale=1.5,
307
+ vx_ratio=0,
308
+ vy_ratio=-0.1,
309
+ flag_do_rot=True,
310
+ **kwargs
311
+ ):
312
+ """ calculate the affine matrix of the cropped image from sparse points, the original image to the cropped image, the inverse is the cropped image to the original image
313
+ pts: landmark, 101 or 68 points or other points, Nx2
314
+ scale: the larger scale factor, the smaller face ratio
315
+ vx_ratio: x shift
316
+ vy_ratio: y shift, the smaller the y shift, the lower the face region
317
+ rot_flag: if it is true, conduct correction
318
+ """
319
+ center, size, angle = parse_rect_from_landmark(
320
+ pts, scale=scale, vx_ratio=vx_ratio, vy_ratio=vy_ratio,
321
+ use_lip=kwargs.get('use_lip', True)
322
+ )
323
+
324
+ s = dsize / size[0] # scale
325
+ tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE) # center of dsize
326
+
327
+ if flag_do_rot:
328
+ costheta, sintheta = cos(angle), sin(angle)
329
+ cx, cy = center[0], center[1] # ori center
330
+ tcx, tcy = tgt_center[0], tgt_center[1] # target center
331
+ # need to infer
332
+ M_INV = np.array(
333
+ [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
334
+ [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
335
+ dtype=DTYPE
336
+ )
337
+ else:
338
+ M_INV = np.array(
339
+ [[s, 0, tgt_center[0] - s * center[0]],
340
+ [0, s, tgt_center[1] - s * center[1]]],
341
+ dtype=DTYPE
342
+ )
343
+
344
+ M_INV_H = np.vstack([M_INV, np.array([0, 0, 1])])
345
+ M = np.linalg.inv(M_INV_H)
346
+
347
+ # M_INV is from the original image to the cropped image, M is from the cropped image to the original image
348
+ return M_INV, M[:2, ...]
349
+
350
+
351
+ def crop_image(img, pts: np.ndarray, **kwargs):
352
+ dsize = kwargs.get('dsize', 224)
353
+ scale = kwargs.get('scale', 1.5) # 1.5 | 1.6
354
+ vy_ratio = kwargs.get('vy_ratio', -0.1) # -0.0625 | -0.1
355
+
356
+ M_INV, _ = _estimate_similar_transform_from_pts(
357
+ pts,
358
+ dsize=dsize,
359
+ scale=scale,
360
+ vy_ratio=vy_ratio,
361
+ flag_do_rot=kwargs.get('flag_do_rot', True),
362
+ )
363
+
364
+ img_crop = _transform_img(img, M_INV, dsize) # origin to crop
365
+ pt_crop = _transform_pts(pts, M_INV)
366
+
367
+ M_o2c = np.vstack([M_INV, np.array([0, 0, 1], dtype=DTYPE)])
368
+ M_c2o = np.linalg.inv(M_o2c)
369
+
370
+ ret_dct = {
371
+ 'M_o2c': M_o2c, # from the original image to the cropped image 3x3
372
+ 'M_c2o': M_c2o, # from the cropped image to the original image 3x3
373
+ 'img_crop': img_crop, # the cropped image
374
+ 'pt_crop': pt_crop, # the landmarks of the cropped image
375
+ }
376
+
377
+ return ret_dct
378
+
379
+ def average_bbox_lst(bbox_lst):
380
+ if len(bbox_lst) == 0:
381
+ return None
382
+ bbox_arr = np.array(bbox_lst)
383
+ return np.mean(bbox_arr, axis=0).tolist()
384
+
385
+ def prepare_paste_back(mask_crop, crop_M_c2o, dsize):
386
+ """prepare mask for later image paste back
387
+ """
388
+ mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize)
389
+ mask_ori = mask_ori.astype(np.float32) / 255.
390
+ return mask_ori
391
+
392
+ def paste_back(img_crop, M_c2o, img_ori, mask_ori):
393
+ """paste back the image
394
+ """
395
+ dsize = (img_ori.shape[1], img_ori.shape[0])
396
+ result = _transform_img(img_crop, M_c2o, dsize=dsize)
397
+ result = np.clip(mask_ori * result + (1 - mask_ori) * img_ori, 0, 255).astype(np.uint8)
398
+ return result
src/utils/cropper.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ import os.path as osp
4
+ from dataclasses import dataclass, field
5
+ from typing import List, Tuple, Union
6
+
7
+ import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
8
+ import numpy as np
9
+
10
+ from ..config.crop_config import CropConfig
11
+ from .crop import (
12
+ average_bbox_lst,
13
+ crop_image,
14
+ crop_image_by_bbox,
15
+ parse_bbox_from_landmark,
16
+ )
17
+ from .io import contiguous
18
+ from .rprint import rlog as log
19
+ from .face_analysis_diy import FaceAnalysisDIY
20
+ from .landmark_runner import LandmarkRunner
21
+
22
+
23
+ def make_abs_path(fn):
24
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
25
+
26
+
27
+ @dataclass
28
+ class Trajectory:
29
+ start: int = -1 # start frame
30
+ end: int = -1 # end frame
31
+ lmk_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list
32
+ bbox_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # bbox list
33
+
34
+ frame_rgb_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # frame list
35
+ lmk_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list
36
+ frame_rgb_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # frame crop list
37
+
38
+
39
+ class Cropper(object):
40
+ def __init__(self, **kwargs) -> None:
41
+ self.crop_cfg: CropConfig = kwargs.get("crop_cfg", None)
42
+ device_id = kwargs.get("device_id", 0)
43
+ flag_force_cpu = kwargs.get("flag_force_cpu", False)
44
+ if flag_force_cpu:
45
+ device = "cpu"
46
+ face_analysis_wrapper_provicer = ["CPUExecutionProvider"]
47
+ else:
48
+ device = "cuda"
49
+ face_analysis_wrapper_provicer = ["CUDAExecutionProvider"]
50
+ self.landmark_runner = LandmarkRunner(
51
+ ckpt_path=make_abs_path(self.crop_cfg.landmark_ckpt_path),
52
+ onnx_provider=device,
53
+ device_id=device_id,
54
+ )
55
+ self.landmark_runner.warmup()
56
+
57
+ self.face_analysis_wrapper = FaceAnalysisDIY(
58
+ name="buffalo_l",
59
+ root=make_abs_path(self.crop_cfg.insightface_root),
60
+ providers=face_analysis_wrapper_provicer,
61
+ )
62
+ self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512))
63
+ self.face_analysis_wrapper.warmup()
64
+
65
+ def update_config(self, user_args):
66
+ for k, v in user_args.items():
67
+ if hasattr(self.crop_cfg, k):
68
+ setattr(self.crop_cfg, k, v)
69
+
70
+ def crop_source_image(self, img_rgb_: np.ndarray, crop_cfg: CropConfig):
71
+ # crop a source image and get neccessary information
72
+ img_rgb = img_rgb_.copy() # copy it
73
+
74
+ img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
75
+ src_face = self.face_analysis_wrapper.get(
76
+ img_bgr,
77
+ flag_do_landmark_2d_106=True,
78
+ direction=crop_cfg.direction,
79
+ max_face_num=crop_cfg.max_face_num,
80
+ )
81
+
82
+ if len(src_face) == 0:
83
+ log("No face detected in the source image.")
84
+ return None
85
+ elif len(src_face) > 1:
86
+ log(f"More than one face detected in the image, only pick one face by rule {crop_cfg.direction}.")
87
+
88
+ # NOTE: temporarily only pick the first face, to support multiple face in the future
89
+ src_face = src_face[0]
90
+ lmk = src_face.landmark_2d_106 # this is the 106 landmarks from insightface
91
+
92
+ # crop the face
93
+ ret_dct = crop_image(
94
+ img_rgb, # ndarray
95
+ lmk, # 106x2 or Nx2
96
+ dsize=crop_cfg.dsize,
97
+ scale=crop_cfg.scale,
98
+ vx_ratio=crop_cfg.vx_ratio,
99
+ vy_ratio=crop_cfg.vy_ratio,
100
+ )
101
+
102
+ lmk = self.landmark_runner.run(img_rgb, lmk)
103
+ ret_dct["lmk_crop"] = lmk
104
+
105
+ # update a 256x256 version for network input
106
+ ret_dct["img_crop_256x256"] = cv2.resize(ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA)
107
+ ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize
108
+
109
+ return ret_dct
110
+
111
+ def crop_driving_video(self, driving_rgb_lst, **kwargs):
112
+ """Tracking based landmarks/alignment and cropping"""
113
+ trajectory = Trajectory()
114
+ direction = kwargs.get("direction", "large-small")
115
+ for idx, frame_rgb in enumerate(driving_rgb_lst):
116
+ if idx == 0 or trajectory.start == -1:
117
+ src_face = self.face_analysis_wrapper.get(
118
+ contiguous(frame_rgb[..., ::-1]),
119
+ flag_do_landmark_2d_106=True,
120
+ direction=direction,
121
+ )
122
+ if len(src_face) == 0:
123
+ log(f"No face detected in the frame #{idx}")
124
+ continue
125
+ elif len(src_face) > 1:
126
+ log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.")
127
+ src_face = src_face[0]
128
+ lmk = src_face.landmark_2d_106
129
+ lmk = self.landmark_runner.run(frame_rgb, lmk)
130
+ trajectory.start, trajectory.end = idx, idx
131
+ else:
132
+ lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
133
+ trajectory.end = idx
134
+
135
+ trajectory.lmk_lst.append(lmk)
136
+ ret_bbox = parse_bbox_from_landmark(
137
+ lmk,
138
+ scale=self.crop_cfg.scale_crop_video,
139
+ vx_ratio_crop_video=self.crop_cfg.vx_ratio_crop_video,
140
+ vy_ratio=self.crop_cfg.vy_ratio_crop_video,
141
+ )["bbox"]
142
+ bbox = [
143
+ ret_bbox[0, 0],
144
+ ret_bbox[0, 1],
145
+ ret_bbox[2, 0],
146
+ ret_bbox[2, 1],
147
+ ] # 4,
148
+ trajectory.bbox_lst.append(bbox) # bbox
149
+ trajectory.frame_rgb_lst.append(frame_rgb)
150
+
151
+ global_bbox = average_bbox_lst(trajectory.bbox_lst)
152
+
153
+ for idx, (frame_rgb, lmk) in enumerate(zip(trajectory.frame_rgb_lst, trajectory.lmk_lst)):
154
+ ret_dct = crop_image_by_bbox(
155
+ frame_rgb,
156
+ global_bbox,
157
+ lmk=lmk,
158
+ dsize=kwargs.get("dsize", 512),
159
+ flag_rot=False,
160
+ borderValue=(0, 0, 0),
161
+ )
162
+ trajectory.frame_rgb_crop_lst.append(ret_dct["img_crop"])
163
+ trajectory.lmk_crop_lst.append(ret_dct["lmk_crop"])
164
+
165
+ return {
166
+ "frame_crop_lst": trajectory.frame_rgb_crop_lst,
167
+ "lmk_crop_lst": trajectory.lmk_crop_lst,
168
+ }
169
+
170
+ def calc_lmks_from_cropped_video(self, driving_rgb_crop_lst, **kwargs):
171
+ """Tracking based landmarks/alignment"""
172
+ trajectory = Trajectory()
173
+ direction = kwargs.get("direction", "large-small")
174
+
175
+ for idx, frame_rgb_crop in enumerate(driving_rgb_crop_lst):
176
+ if idx == 0 or trajectory.start == -1:
177
+ src_face = self.face_analysis_wrapper.get(
178
+ contiguous(frame_rgb_crop[..., ::-1]), # convert to BGR
179
+ flag_do_landmark_2d_106=True,
180
+ direction=direction,
181
+ )
182
+ if len(src_face) == 0:
183
+ log(f"No face detected in the frame #{idx}")
184
+ raise Exception(f"No face detected in the frame #{idx}")
185
+ elif len(src_face) > 1:
186
+ log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.")
187
+ src_face = src_face[0]
188
+ lmk = src_face.landmark_2d_106
189
+ lmk = self.landmark_runner.run(frame_rgb_crop, lmk)
190
+ trajectory.start, trajectory.end = idx, idx
191
+ else:
192
+ lmk = self.landmark_runner.run(frame_rgb_crop, trajectory.lmk_lst[-1])
193
+ trajectory.end = idx
194
+
195
+ trajectory.lmk_lst.append(lmk)
196
+ return trajectory.lmk_lst
src/utils/dependencies/insightface/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+ # pylint: disable=wrong-import-position
3
+ """InsightFace: A Face Analysis Toolkit."""
4
+ from __future__ import absolute_import
5
+
6
+ try:
7
+ #import mxnet as mx
8
+ import onnxruntime
9
+ except ImportError:
10
+ raise ImportError(
11
+ "Unable to import dependency onnxruntime. "
12
+ )
13
+
14
+ __version__ = '0.7.3'
15
+
16
+ from . import model_zoo
17
+ from . import utils
18
+ from . import app
19
+ from . import data
20
+
src/utils/dependencies/insightface/app/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .face_analysis import *
src/utils/dependencies/insightface/app/common.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy.linalg import norm as l2norm
3
+ #from easydict import EasyDict
4
+
5
+ class Face(dict):
6
+
7
+ def __init__(self, d=None, **kwargs):
8
+ if d is None:
9
+ d = {}
10
+ if kwargs:
11
+ d.update(**kwargs)
12
+ for k, v in d.items():
13
+ setattr(self, k, v)
14
+ # Class attributes
15
+ #for k in self.__class__.__dict__.keys():
16
+ # if not (k.startswith('__') and k.endswith('__')) and not k in ('update', 'pop'):
17
+ # setattr(self, k, getattr(self, k))
18
+
19
+ def __setattr__(self, name, value):
20
+ if isinstance(value, (list, tuple)):
21
+ value = [self.__class__(x)
22
+ if isinstance(x, dict) else x for x in value]
23
+ elif isinstance(value, dict) and not isinstance(value, self.__class__):
24
+ value = self.__class__(value)
25
+ super(Face, self).__setattr__(name, value)
26
+ super(Face, self).__setitem__(name, value)
27
+
28
+ __setitem__ = __setattr__
29
+
30
+ def __getattr__(self, name):
31
+ return None
32
+
33
+ @property
34
+ def embedding_norm(self):
35
+ if self.embedding is None:
36
+ return None
37
+ return l2norm(self.embedding)
38
+
39
+ @property
40
+ def normed_embedding(self):
41
+ if self.embedding is None:
42
+ return None
43
+ return self.embedding / self.embedding_norm
44
+
45
+ @property
46
+ def sex(self):
47
+ if self.gender is None:
48
+ return None
49
+ return 'M' if self.gender==1 else 'F'
src/utils/dependencies/insightface/app/face_analysis.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Organization : insightface.ai
3
+ # @Author : Jia Guo
4
+ # @Time : 2021-05-04
5
+ # @Function :
6
+
7
+
8
+ from __future__ import division
9
+
10
+ import glob
11
+ import os.path as osp
12
+
13
+ import numpy as np
14
+ import onnxruntime
15
+ from numpy.linalg import norm
16
+
17
+ from ..model_zoo import model_zoo
18
+ from ..utils import ensure_available
19
+ from .common import Face
20
+
21
+
22
+ DEFAULT_MP_NAME = 'buffalo_l'
23
+ __all__ = ['FaceAnalysis']
24
+
25
+ class FaceAnalysis:
26
+ def __init__(self, name=DEFAULT_MP_NAME, root='~/.insightface', allowed_modules=None, **kwargs):
27
+ onnxruntime.set_default_logger_severity(3)
28
+ self.models = {}
29
+ self.model_dir = ensure_available('models', name, root=root)
30
+ onnx_files = glob.glob(osp.join(self.model_dir, '*.onnx'))
31
+ onnx_files = sorted(onnx_files)
32
+ for onnx_file in onnx_files:
33
+ model = model_zoo.get_model(onnx_file, **kwargs)
34
+ if model is None:
35
+ print('model not recognized:', onnx_file)
36
+ elif allowed_modules is not None and model.taskname not in allowed_modules:
37
+ print('model ignore:', onnx_file, model.taskname)
38
+ del model
39
+ elif model.taskname not in self.models and (allowed_modules is None or model.taskname in allowed_modules):
40
+ # print('find model:', onnx_file, model.taskname, model.input_shape, model.input_mean, model.input_std)
41
+ self.models[model.taskname] = model
42
+ else:
43
+ print('duplicated model task type, ignore:', onnx_file, model.taskname)
44
+ del model
45
+ assert 'detection' in self.models
46
+ self.det_model = self.models['detection']
47
+
48
+
49
+ def prepare(self, ctx_id, det_thresh=0.5, det_size=(640, 640)):
50
+ self.det_thresh = det_thresh
51
+ assert det_size is not None
52
+ # print('set det-size:', det_size)
53
+ self.det_size = det_size
54
+ for taskname, model in self.models.items():
55
+ if taskname=='detection':
56
+ model.prepare(ctx_id, input_size=det_size, det_thresh=det_thresh)
57
+ else:
58
+ model.prepare(ctx_id)
59
+
60
+ def get(self, img, max_num=0):
61
+ bboxes, kpss = self.det_model.detect(img,
62
+ max_num=max_num,
63
+ metric='default')
64
+ if bboxes.shape[0] == 0:
65
+ return []
66
+ ret = []
67
+ for i in range(bboxes.shape[0]):
68
+ bbox = bboxes[i, 0:4]
69
+ det_score = bboxes[i, 4]
70
+ kps = None
71
+ if kpss is not None:
72
+ kps = kpss[i]
73
+ face = Face(bbox=bbox, kps=kps, det_score=det_score)
74
+ for taskname, model in self.models.items():
75
+ if taskname=='detection':
76
+ continue
77
+ model.get(img, face)
78
+ ret.append(face)
79
+ return ret
80
+
81
+ def draw_on(self, img, faces):
82
+ import cv2
83
+ dimg = img.copy()
84
+ for i in range(len(faces)):
85
+ face = faces[i]
86
+ box = face.bbox.astype(np.int)
87
+ color = (0, 0, 255)
88
+ cv2.rectangle(dimg, (box[0], box[1]), (box[2], box[3]), color, 2)
89
+ if face.kps is not None:
90
+ kps = face.kps.astype(np.int)
91
+ #print(landmark.shape)
92
+ for l in range(kps.shape[0]):
93
+ color = (0, 0, 255)
94
+ if l == 0 or l == 3:
95
+ color = (0, 255, 0)
96
+ cv2.circle(dimg, (kps[l][0], kps[l][1]), 1, color,
97
+ 2)
98
+ if face.gender is not None and face.age is not None:
99
+ cv2.putText(dimg,'%s,%d'%(face.sex,face.age), (box[0]-1, box[1]-4),cv2.FONT_HERSHEY_COMPLEX,0.7,(0,255,0),1)
100
+
101
+ #for key, value in face.items():
102
+ # if key.startswith('landmark_3d'):
103
+ # print(key, value.shape)
104
+ # print(value[0:10,:])
105
+ # lmk = np.round(value).astype(np.int)
106
+ # for l in range(lmk.shape[0]):
107
+ # color = (255, 0, 0)
108
+ # cv2.circle(dimg, (lmk[l][0], lmk[l][1]), 1, color,
109
+ # 2)
110
+ return dimg
src/utils/dependencies/insightface/data/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .image import get_image
2
+ from .pickle_object import get_object
src/utils/dependencies/insightface/data/image.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import os
3
+ import os.path as osp
4
+ from pathlib import Path
5
+
6
+ class ImageCache:
7
+ data = {}
8
+
9
+ def get_image(name, to_rgb=False):
10
+ key = (name, to_rgb)
11
+ if key in ImageCache.data:
12
+ return ImageCache.data[key]
13
+ images_dir = osp.join(Path(__file__).parent.absolute(), 'images')
14
+ ext_names = ['.jpg', '.png', '.jpeg']
15
+ image_file = None
16
+ for ext_name in ext_names:
17
+ _image_file = osp.join(images_dir, "%s%s"%(name, ext_name))
18
+ if osp.exists(_image_file):
19
+ image_file = _image_file
20
+ break
21
+ assert image_file is not None, '%s not found'%name
22
+ img = cv2.imread(image_file)
23
+ if to_rgb:
24
+ img = img[:,:,::-1]
25
+ ImageCache.data[key] = img
26
+ return img
27
+
src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png ADDED
src/utils/dependencies/insightface/data/images/mask_black.jpg ADDED
src/utils/dependencies/insightface/data/images/mask_blue.jpg ADDED
src/utils/dependencies/insightface/data/images/mask_green.jpg ADDED
src/utils/dependencies/insightface/data/images/mask_white.jpg ADDED
src/utils/dependencies/insightface/data/images/t1.jpg ADDED
src/utils/dependencies/insightface/data/objects/meanshape_68.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39ffecf84ba73f0d0d7e49380833ba88713c9fcdec51df4f7ac45a48b8f4cc51
3
+ size 974
src/utils/dependencies/insightface/data/pickle_object.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import os
3
+ import os.path as osp
4
+ from pathlib import Path
5
+ import pickle
6
+
7
+ def get_object(name):
8
+ objects_dir = osp.join(Path(__file__).parent.absolute(), 'objects')
9
+ if not name.endswith('.pkl'):
10
+ name = name+".pkl"
11
+ filepath = osp.join(objects_dir, name)
12
+ if not osp.exists(filepath):
13
+ return None
14
+ with open(filepath, 'rb') as f:
15
+ obj = pickle.load(f)
16
+ return obj
17
+
src/utils/dependencies/insightface/data/rec_builder.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import numpy as np
3
+ import os
4
+ import os.path as osp
5
+ import sys
6
+ import mxnet as mx
7
+
8
+
9
+ class RecBuilder():
10
+ def __init__(self, path, image_size=(112, 112)):
11
+ self.path = path
12
+ self.image_size = image_size
13
+ self.widx = 0
14
+ self.wlabel = 0
15
+ self.max_label = -1
16
+ assert not osp.exists(path), '%s exists' % path
17
+ os.makedirs(path)
18
+ self.writer = mx.recordio.MXIndexedRecordIO(os.path.join(path, 'train.idx'),
19
+ os.path.join(path, 'train.rec'),
20
+ 'w')
21
+ self.meta = []
22
+
23
+ def add(self, imgs):
24
+ #!!! img should be BGR!!!!
25
+ #assert label >= 0
26
+ #assert label > self.last_label
27
+ assert len(imgs) > 0
28
+ label = self.wlabel
29
+ for img in imgs:
30
+ idx = self.widx
31
+ image_meta = {'image_index': idx, 'image_classes': [label]}
32
+ header = mx.recordio.IRHeader(0, label, idx, 0)
33
+ if isinstance(img, np.ndarray):
34
+ s = mx.recordio.pack_img(header,img,quality=95,img_fmt='.jpg')
35
+ else:
36
+ s = mx.recordio.pack(header, img)
37
+ self.writer.write_idx(idx, s)
38
+ self.meta.append(image_meta)
39
+ self.widx += 1
40
+ self.max_label = label
41
+ self.wlabel += 1
42
+
43
+
44
+ def add_image(self, img, label):
45
+ #!!! img should be BGR!!!!
46
+ #assert label >= 0
47
+ #assert label > self.last_label
48
+ idx = self.widx
49
+ header = mx.recordio.IRHeader(0, label, idx, 0)
50
+ if isinstance(label, list):
51
+ idlabel = label[0]
52
+ else:
53
+ idlabel = label
54
+ image_meta = {'image_index': idx, 'image_classes': [idlabel]}
55
+ if isinstance(img, np.ndarray):
56
+ s = mx.recordio.pack_img(header,img,quality=95,img_fmt='.jpg')
57
+ else:
58
+ s = mx.recordio.pack(header, img)
59
+ self.writer.write_idx(idx, s)
60
+ self.meta.append(image_meta)
61
+ self.widx += 1
62
+ self.max_label = max(self.max_label, idlabel)
63
+
64
+ def close(self):
65
+ with open(osp.join(self.path, 'train.meta'), 'wb') as pfile:
66
+ pickle.dump(self.meta, pfile, protocol=pickle.HIGHEST_PROTOCOL)
67
+ print('stat:', self.widx, self.wlabel)
68
+ with open(os.path.join(self.path, 'property'), 'w') as f:
69
+ f.write("%d,%d,%d\n" % (self.max_label+1, self.image_size[0], self.image_size[1]))
70
+ f.write("%d\n" % (self.widx))
71
+
src/utils/dependencies/insightface/model_zoo/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from .model_zoo import get_model
2
+ from .arcface_onnx import ArcFaceONNX
3
+ from .retinaface import RetinaFace
4
+ from .scrfd import SCRFD
5
+ from .landmark import Landmark
6
+ from .attribute import Attribute