import gradio as gr from huggingface_hub import InferenceClient from gtts import gTTS import os # Inicializando o cliente da Hugging Face com o modelo de linguagem client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Função para gerar a resposta e o áudio def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response_text = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response_text += token # Convertendo o texto em fala tts = gTTS(response_text, lang='pt') audio_file = "response.mp3" tts.save(audio_file) return response_text, audio_file # Interface do Gradio usando 'gr.Interface' para múltiplos tipos de saída demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(label="User Input", placeholder="Digite sua mensagem aqui..."), gr.State([]), # Histórico da conversa gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], outputs=[ gr.Textbox(label="Chatbot Response"), gr.Audio(label="Response in Audio") ], title="Chatbot com TTS", description="Digite uma mensagem e o chatbot responderá com texto e voz." ) if __name__ == "__main__": demo.launch()