File size: 7,094 Bytes
9735086
1e5b124
 
 
9735086
1e5b124
44c25e2
1e5b124
9735086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c25e2
 
 
 
9735086
 
1e5b124
 
 
 
 
44c25e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9735086
 
1e5b124
 
 
44c25e2
1e5b124
 
 
 
44c25e2
 
 
 
 
 
 
 
 
1e5b124
 
44c25e2
 
 
 
1e5b124
 
44c25e2
 
9735086
 
1e5b124
44c25e2
 
 
 
 
 
1e5b124
44c25e2
9e6217b
44c25e2
9e6217b
 
 
44c25e2
 
 
 
 
9735086
44c25e2
 
 
 
 
 
1e5b124
 
44c25e2
 
 
 
 
 
 
 
 
 
 
 
 
 
1e5b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

from abc import ABC, abstractmethod
from haystack.nodes import BM25Retriever, FARMReader
from haystack.document_stores import ElasticsearchDocumentStore
from haystack.pipelines import ExtractiveQAPipeline, DocumentSearchPipeline
from haystack.document_stores import PineconeDocumentStore
from haystack.nodes import EmbeddingRetriever, OpenAIAnswerGenerator

import json
import logging
import os
import shutil
import sys
import uuid
from json import JSONDecodeError
from pathlib import Path
from typing import List, Optional

import pandas as pd

from haystack import BaseComponent, Document
from haystack.document_stores import PineconeDocumentStore
from haystack.nodes import (
    EmbeddingRetriever,
    FARMReader
)
from haystack.pipelines import ExtractiveQAPipeline, Pipeline, GenerativeQAPipeline
from haystack.pipelines import BaseStandardPipeline
from haystack.nodes.reader import BaseReader
from haystack.nodes.retriever import BaseRetriever
from sentence_transformers import SentenceTransformer

import certifi
import datetime
import requests
from base64 import b64encode

ca_certs = certifi.where() 
class QAPipeline(BaseStandardPipeline):
    """
    Pipeline for Extractive Question Answering.
    """

    def __init__(self, reader: BaseReader, retriever: BaseRetriever):
        """
        :param reader: Reader instance
        :param retriever: Retriever instance
        """
        self.pipeline = Pipeline()
        self.pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
        self.pipeline.add_node(component=reader, name="Reader", inputs=["Retriever"])
        self.metrics_filter = {"Retriever": ["recall_single_hit"]}

    def run(self, query: str, params: Optional[dict] = None, debug: Optional[bool] = None):
        """
        :param query: The search query string.
        :param params: Params for the `retriever` and `reader`. For instance,
                       params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}
        :param debug: Whether the pipeline should instruct nodes to collect debug information
                      about their execution. By default these include the input parameters
                      they received and the output they generated.
                      All debug information can then be found in the dict returned
                      by this method under the key "_debug"
        """
                
        output = self.pipeline.run(query=query, params=params, debug=debug)
        return output


class DocumentQueries(ABC):
    
    @abstractmethod
    def search_by_query(self, query : str, retriever_top_k: int, reader_top_k: int, index_name: str = None, filters = None):
        pass

class PinecodeProposalQueries(DocumentQueries):
    
    def __init__(self, index_name: str, api_key, reader_name_or_path: str, use_gpu = True,
                 embedding_dim = 384, environment = "us-east1-gcp") -> None:
        
        reader = FARMReader(model_name_or_path = reader_name_or_path, 
                            use_gpu = use_gpu, num_processes = 1, 
                            context_window_size = 200)
        
        self._initialize_pipeline(index_name, api_key, reader = reader, embedding_dim= 
                                  embedding_dim, environment = environment)
        #self.log = Log(es_host= es_host, es_index="log", es_user = es_user, es_password= es_password)

    def _initialize_pipeline(self, index_name, api_key, similarity = "cosine",
                             embedding_dim = 384, reader = None,
                             environment = "us-east1-gcp",
                             metadata_config = {"indexed": ["title", "source_title"]}):
        if reader is not None:
            self.reader = reader
        self.OPENAI_generator = OpenAIAnswerGenerator(api_key="", 
                                                      model="text-davinci-003", temperature=.5, max_tokens=60)
        #pinecone.init(api_key=es_password, environment="us-east1-gcp")
        
        self.document_store = PineconeDocumentStore(
            api_key = api_key,
            environment = environment,
            index = index_name,
            similarity = similarity,
            embedding_dim = embedding_dim,
            metadata_config = {"indexed": ["title","source_title"]}
        )
                
        self.retriever = EmbeddingRetriever(
            document_store= self.document_store,
            embedding_model = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
            model_format="sentence_transformers"
        )
                     
        self.extractive_pipe = ExtractiveQAPipeline (reader = self.reader, 
                                          retriever = self.retriever)
        self.generative_OPENAI_pipe = GenerativeQAPipeline(generator = self.OPENAI_generator, 
                                                           retriever = self.retriever)
        
    def search_by_query(self, query : str, retriever_top_k: int, reader_top_k: int, index_name: str = None, filters = None):
        #self.document_store.update_embeddings(self.retriever, update_existing_embeddings=False)        
        params = {"Retriever": {"top_k": retriever_top_k, 
                                "filters": filters}, 
                  "Reader": {"top_k": reader_top_k}}
        prediction = self.extractive_pipe.run( query = query, params = params, debug = True)      
        return prediction["answers"]

    def genenerate_answer_OpenAI(self, query : str, retriever_top_k: int, reader_top_k: int, es_index: str = None, filters = None) :
        params = {"Retriever": {"top_k": retriever_top_k, 
                                "filters": filters}, 
                  "Generator": {"top_k": reader_top_k}} 
        prediction = self.generative_OPENAI_pipe.run( query = query, params = params)      
        return prediction

    def genenerate_answer_HF(self, query : str, retriever_top_k: int, reader_top_k: int, es_index: str = None, filters = None) :
        params = {"Retriever": {"top_k": retriever_top_k, 
                                "filters": filters}, 
                  "Generator": {"top_k": reader_top_k}} 
        prediction = self.generative_HF_pipe.run( query = query, params = params)      
        return prediction

class Log():
    
    def __init__(self, es_host: str, es_index: str, es_user, es_password) -> None:
        self.elastic_endpoint = f"https://{es_host}:443/{es_index}/_doc"
        self.credentials = b64encode(b"3pvrzh9tl:4yl4vk9ijr").decode("ascii")
        self.auth_header = { 'Authorization' : 'Basic %s' %  self.credentials }
                      
    def write_log(self, message: str, source: str) -> None:
        created_date = datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%SZ')
        post_data  = {
            "message" : message,
            "createdDate": {
                "date" : created_date
            },
            "source": source
        }
        r = requests.post(self.elastic_endpoint, json = post_data, headers = self.auth_header)
        print(r.text)