Spaces:
Running
Running
File size: 12,894 Bytes
bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 a1e077b 025cc15 bbc89f6 025cc15 bbc89f6 a1e077b bbc89f6 025cc15 a1e077b b16249c 025cc15 b16249c a1e077b bbc89f6 a1e077b bbc89f6 a1e077b bbc89f6 b16249c 025cc15 bbc89f6 a1e077b bbc89f6 a1e077b bbc89f6 a1e077b bbc89f6 a1e077b bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 7a6ca6b bbc89f6 7a6ca6b 025cc15 bbc89f6 025cc15 bbc89f6 7a6ca6b 025cc15 bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 87a24f0 025cc15 87a24f0 a1e077b bbc89f6 025cc15 bbc89f6 a1e077b bbc89f6 a1e077b bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 025cc15 bbc89f6 b16249c bbc89f6 025cc15 bbc89f6 b16249c bbc89f6 a1e077b 025cc15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import os
import zipfile
from pathlib import Path
import gradio as gr
from database import (
get_user_credits,
update_user_credits,
get_lora_models_info,
get_user_lora_models
)
from services.image_generation import generate_image
from services.train_lora import lora_pipeline
from utils.image_utils import url_to_pil_image
from utils.file_utils import load_file_content
LORA_MODELS = get_lora_models_info()
if not isinstance(LORA_MODELS, list):
raise ValueError("Expected loras_models to be a list of dictionaries.")
BASE_DIR = Path(__file__).parent
LOGIN_CSS_PATH = BASE_DIR / 'static/css/login.css'
MAIN_CSS_PATH = BASE_DIR / 'static/css/main.css'
LANDING_HTML_PATH = BASE_DIR / 'static/html/landing.html'
MAIN_HEADER_PATH = BASE_DIR / 'static/html/main_header.html'
LOGIN_CSS = load_file_content(LOGIN_CSS_PATH)
MAIN_CSS = load_file_content(MAIN_CSS_PATH)
LANDING_PAGE = load_file_content(LANDING_HTML_PATH)
MAIN_HEADER = load_file_content(MAIN_HEADER_PATH)
def load_user_models(request: gr.Request):
user = request.session.get('user')
print(user)
if user:
user_models = get_user_lora_models(user['id'])
if user_models:
return [(item.get("image_url", "assets/logo.jpg"), item["lora_name"]) for item in user_models]
return []
def update_selection(evt: gr.SelectData, gallery_type: str, width, height):
if gallery_type == "user":
selected_lora = {"lora_name": "custom", "trigger_word": "custom"}
else:
selected_lora = LORA_MODELS[evt.index]
new_placeholder = f"Enter a prompt for {selected_lora['lora_name']}"
trigger_word = selected_lora["trigger_word"]
updated_text = f"#### Trigger Word: {trigger_word} ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width, height = 768, 1024
elif selected_lora["aspect"] == "landscape":
width, height = 1024, 768
return gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, gallery_type
def compress_and_train(request: gr.Request, files, model_name, trigger_word, train_steps, lora_rank, batch_size, learning_rate):
if not files:
return "No Images. Please, upload some images to start training"
user = request.session.get('user')
_, training_credits = get_user_credits(user['id'])
if training_credits <= 0:
raise gr.Error("You ran out of credtis. Please buy more to continue")
if not user:
raise gr.Error("User not authenticated. Please log in.")
user_id = user['id']
# Create a directory in the user's home folder
output_dir = os.path.expanduser("~/gradio_training_data")
os.makedirs(output_dir, exist_ok=True)
# Create a zip file in the output directory
zip_path = os.path.join(output_dir, "training_data.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file_info in files:
file_path = file_info[0] # The first element of the tuple is the file path
file_name = os.path.basename(file_path)
zipf.write(file_path, file_name)
print(f"Zip file created at: {zip_path}")
print(f'[INFO] Procesando {trigger_word}')
# Now call the train_lora function with the zip file path
result = lora_pipeline(user_id,
zip_path,
model_name,
trigger_word=trigger_word,
steps=train_steps,
lora_rank=lora_rank,
batch_size=batch_size,
autocaption=True,
learning_rate=learning_rate)
new_training_credits = training_credits - 1
update_user_credits(user['id'], user['generation_credits'], new_training_credits)
# Update session data
user['training_credits'] = new_training_credits
request.session['user'] = user
return gr.Info("Your model is training. In about 20 minutes, it will be ready for you to test in 'Generation"), new_training_credits
def run_lora(request: gr.Request, prompt, cfg_scale, steps, selected_index, selected_gallery, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
user = request.session.get('user')
if not user:
raise gr.Error("User not authenticated. Please log in.")
lora_models = get_user_lora_models(user['id'])
print(f'Selected gallery: {selected_gallery}')
if selected_gallery == "user":
lora_models = get_user_lora_models(user['id'])
print('Using user models')
else: # public
lora_models = get_lora_models_info()
print('Using public models')
print(f'Selected index: {selected_index}')
if selected_index is None:
selected_lora = None
else:
selected_lora = lora_models[selected_index]
generation_credits, _ = get_user_credits(user['id'])
if selected_lora:
print(f"Selected Lora: {selected_lora['lora_name']}")
model_name = selected_lora['lora_name']
use_default = False
else:
model_name = "black-forest-labs/flux-pro"
print(f"Using default Lora: {model_name}")
use_default = True
if generation_credits <= 0:
raise gr.Error("Ya no tienes creditos disponibles. Compra para continuar.")
image_url = generate_image(model_name, prompt, steps, cfg_scale, width, height, lora_scale, progress, use_default)
image = url_to_pil_image(image_url)
# Update user's credits
new_generation_credits = generation_credits - 1
update_user_credits(user['id'], new_generation_credits, user['train_credits'])
# Update session data
user['generation_credits'] = new_generation_credits
request.session['user'] = user
print(f"Generation credits remaining: {new_generation_credits}")
return image, new_generation_credits
def display_credits(request: gr.Request):
user = request.session.get('user')
if user:
generation_credits, train_credits = get_user_credits(user['id'])
return generation_credits, train_credits
return 0, 0
def load_greet_and_credits(request: gr.Request):
greeting = greet(request)
generation_credits, train_credits = display_credits(request)
return greeting, generation_credits, train_credits
def greet(request: gr.Request):
user = request.session.get('user')
if user:
with gr.Column():
with gr.Row():
greeting = f"Hola 👋 {user['given_name']}!"
return f"{greeting}\n"
return "OBTU AI. Please log in."
with gr.Blocks(theme=gr.themes.Soft(), css=LOGIN_CSS) as login_demo:
with gr.Column(elem_id="google-btn-container", elem_classes="google-btn-container svelte-vt1mxs gap"):
btn = gr.Button("Sign In with Google", elem_classes="login-with-google-btn")
_js_redirect = """
() => {
url = '/login' + window.location.search;
window.open(url, '_blank');
}
"""
btn.click(None, js=_js_redirect)
gr.HTML(LANDING_PAGE)
header = '<script src="https://cdn.lordicon.com/lordicon.js"></script>'
with gr.Blocks(theme=gr.themes.Soft(), head=header, css=MAIN_CSS) as main_demo:
title = gr.HTML(MAIN_HEADER)
with gr.Column(elem_id="logout-btn-container"):
gr.Button("Logout", link="/logout", elem_id="logout_btn")
greetings = gr.Markdown("Loading user information...")
selected_index = gr.State(None)
with gr.Row():
with gr.Column():
generation_credits_display = gr.Number(label="Generation Credits", precision=0, interactive=False)
with gr.Column():
train_credits_display = gr.Number(label="Training Credits", precision=0, interactive=False)
with gr.Column():
gr.Button("Buy Credits 💳", link="/buy_credits")
with gr.Tabs():
with gr.TabItem('Create'):
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt",
lines=1,
placeholder="Enter Your Prompt to start creating 📷",
info='Some public models may experience longer processing times due to server availability and queue management.')
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=4):
result = gr.Image(label="Imagen Generada")
with gr.Column(scale=3):
with gr.Accordion("Public Models"):
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image_url"], item["model_name"]) for item in LORA_MODELS],
label="Public Models",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Accordion("Your Models"):
user_model_gallery = gr.Gallery(
label="Galeria de Modelos",
allow_preview=False,
columns=3,
elem_id="galley"
)
gallery_type = gr.State("Public")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)
gallery.select(
update_selection,
inputs=[gr.State("public"), width, height],
outputs=[prompt, selected_info, selected_index, width, height, gallery_type]
)
user_model_gallery.select(
update_selection,
inputs=[gr.State("user"), width, height],
outputs=[prompt, selected_info, selected_index, width, height, gallery_type]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, gallery_type, width, height, lora_scale],
outputs=[result, generation_credits_display]
)
with gr.TabItem("Train"):
gr.Markdown("# Train your own model 🧠")
gr.Markdown("In this section, you can train your own model using your images.")
with gr.Row():
with gr.Column():
train_dataset = gr.Gallery(columns=4, interactive=True, label="Tus Imagenes")
model_name = gr.Textbox(label="Model Name",)
trigger_word = gr.Textbox(label="Trigger Word",
info="This will be a keyword to later instruct the model when to use these new capabilities we're going to teach it",
)
train_button = gr.Button("Start Training")
with gr.Accordion("Advanced Settings", open=False):
train_steps = gr.Slider(label="Training Steps", minimum=100, maximum=10000, step=100, value=1000)
lora_rank = gr.Number(label='lora_rank', value=16)
batch_size = gr.Number(label='batch_size', value=1)
learning_rate = gr.Number(label='learning_rate', value=0.0004)
training_status = gr.Textbox(label="Training Status")
train_button.click(
compress_and_train,
inputs=[train_dataset, model_name, trigger_word, train_steps, lora_rank, batch_size, learning_rate],
outputs=[training_status,train_credits_display]
)
main_demo.load(load_user_models, None, user_model_gallery)
main_demo.load(load_greet_and_credits, None, [greetings, generation_credits_display, train_credits_display]) |