Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,25 +36,56 @@ def predict(
|
|
36 |
ideology_test,
|
37 |
political_statement,
|
38 |
temperature,
|
39 |
-
top_p
|
|
|
40 |
):
|
41 |
-
|
42 |
-
print("Ideology Test:", ideology_test)
|
43 |
-
print(political_statement)
|
44 |
|
|
|
|
|
45 |
if prompt_manipulation == "Impersonation (direct steering)":
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
else:
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
# contexts = [context for context in retrieved_context['documents']]
|
56 |
-
# print(contexts[0])
|
57 |
-
|
58 |
client = OpenAI(base_url=togetherai_base_url, api_key=togetherai_api_key)
|
59 |
|
60 |
response1 = client.completions.create(
|
@@ -169,11 +200,12 @@ def main():
|
|
169 |
with gr.Row():
|
170 |
temp_input = gr.Slider(minimum=0, maximum=1, step=0.01, label="Temperature", value=0.7)
|
171 |
top_p_input = gr.Slider(minimum=0, maximum=1, step=0.01, label="Top P", value=1)
|
|
|
172 |
|
173 |
# Link settings to the predict function
|
174 |
submit_btn.click(
|
175 |
fn=predict,
|
176 |
-
inputs=[openai_api_key, togetherai_api_key, model_selector1, model_selector2, prompt_manipulation, direct_steering_option, ideology_test, political_statement, temp_input, top_p_input],
|
177 |
outputs=[output1, output2]
|
178 |
)
|
179 |
|
|
|
36 |
ideology_test,
|
37 |
political_statement,
|
38 |
temperature,
|
39 |
+
top_p,
|
40 |
+
num_contexts
|
41 |
):
|
|
|
|
|
|
|
42 |
|
43 |
+
prompt_template = "{impersonation_template} {answer_option_template} {statement}{rag_template}\nDeine Antwort darf nur eine der vier Antwortmöglichkeiten beinhalten."
|
44 |
+
|
45 |
if prompt_manipulation == "Impersonation (direct steering)":
|
46 |
+
impersonation_template = f"Du bist ein Politiker der Partei {direct_steering_option}."
|
47 |
+
answer_option_template = f"{test_format[ideology_test]}"
|
48 |
+
rag_template = ""
|
49 |
+
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
|
50 |
+
print(prompt)
|
51 |
+
|
52 |
+
elif prompt_manipulation == "Most similar RAG (indirect steering with related context)":
|
53 |
+
impersonation_template = ""
|
54 |
+
answer_option_template = f"{test_format[ideology_test]}"
|
55 |
+
|
56 |
+
client = chromadb.PersistentClient(path="./manifesto-database")
|
57 |
+
manifesto_collection = client.get_or_create_collection(name="manifesto-database", embedding_function=multilingual_embeddings)
|
58 |
+
retrieved_context = manifesto_collection.query(query_texts=[user_input], n_results=num_contexts, where={"ideology": direct_steering_option})
|
59 |
+
contexts = [context for context in retrieved_context['documents']]
|
60 |
+
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts])
|
61 |
+
|
62 |
+
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
|
63 |
+
print(prompt)
|
64 |
+
|
65 |
+
elif prompt_manipulation == "Random RAG (indirect steering with randomized context)":
|
66 |
+
with open(f"data/ids_{direct_steering_option}.json", "r") as file:
|
67 |
+
ids = json.load(file)
|
68 |
+
random_ids = random.sample(ids, n_results)
|
69 |
+
|
70 |
+
impersonation_template = ""
|
71 |
+
answer_option_template = f"{test_format[ideology_test]}"
|
72 |
+
|
73 |
+
client = chromadb.PersistentClient(path="./manifesto-database")
|
74 |
+
manifesto_collection = client.get_or_create_collection(name="manifesto-database", embedding_function=multilingual_embeddings)
|
75 |
+
retrieved_context = manifesto_collection.get(ids=random_ids, where={"ideology": direct_steering_option})
|
76 |
+
contexts = [context for context in retrieved_context['documents']]
|
77 |
+
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts])
|
78 |
+
|
79 |
+
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
|
80 |
+
print(prompt)
|
81 |
|
82 |
else:
|
83 |
+
impersonation_template = ""
|
84 |
+
answer_option_template = f"{test_format[ideology_test]}"
|
85 |
+
rag_template = ""
|
86 |
+
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement, rag_template=rag_template)
|
87 |
+
print(prompt)
|
88 |
+
|
|
|
|
|
|
|
89 |
client = OpenAI(base_url=togetherai_base_url, api_key=togetherai_api_key)
|
90 |
|
91 |
response1 = client.completions.create(
|
|
|
200 |
with gr.Row():
|
201 |
temp_input = gr.Slider(minimum=0, maximum=1, step=0.01, label="Temperature", value=0.7)
|
202 |
top_p_input = gr.Slider(minimum=0, maximum=1, step=0.01, label="Top P", value=1)
|
203 |
+
num_contexts = gr.Slider(minimum=0, maximum=1, step=0.01, label="Top k retrieved contexts", value=3)
|
204 |
|
205 |
# Link settings to the predict function
|
206 |
submit_btn.click(
|
207 |
fn=predict,
|
208 |
+
inputs=[openai_api_key, togetherai_api_key, model_selector1, model_selector2, prompt_manipulation, direct_steering_option, ideology_test, political_statement, temp_input, top_p_input, num_contexts],
|
209 |
outputs=[output1, output2]
|
210 |
)
|
211 |
|