File size: 10,147 Bytes
24230a4
 
b5e610f
24230a4
 
 
 
 
 
 
 
 
 
f26d531
 
 
 
 
24230a4
7b54b47
24230a4
 
 
eb07fe2
24230a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f6bed
 
 
24230a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import inspect
from PIL import Image
import os
import torch
from torch import autocast
from torchvision import transforms as T
from types import MethodType
from typing import List, Optional, Tuple, Union

from diffusers import StableDiffusionPipeline
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput

COLAB = False
if COLAB:
  pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16, use_auth_token=os.environ.get('HF_TOKEN_SD')) 
else: 
  pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=os.environ.get('HF_TOKEN_SD'))  

#pipe = pipe.to('cuda')




# Overriding the U-Net forward pass
def forward(
    self,
    sample: torch.FloatTensor,
    timestep: Union[torch.Tensor, float, int],
    encoder_hidden_states: torch.Tensor,
    return_dict: bool = True,
) -> Union[UNet2DConditionOutput, Tuple]:
    """r
    Args:
        sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
        timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
        encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

    Returns:
        [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
        [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
        returning a tuple, the first element is the sample tensor.
    """
    # 0. center input if necessary
    if self.config.center_input_sample:
        sample = 2 * sample - 1.0

    # 1. time
    timesteps = timestep
    if not torch.is_tensor(timesteps):
        timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
    elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
        timesteps = timesteps.to(dtype=torch.float32)
        timesteps = timesteps[None].to(device=sample.device)

    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
    timesteps = timesteps.expand(sample.shape[0])

    t_emb = self.time_proj(timesteps)
    #emb = self.time_embedding(t_emb)
    emb = self.time_embedding(t_emb.to(sample.dtype))

    # 2. pre-process
    sample = self.conv_in(sample)

    # 3. down
    down_block_res_samples = (sample,)
    for downsample_block in self.down_blocks:
        if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
            sample, res_samples = downsample_block(
                hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
            )
        else:
            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

        down_block_res_samples += res_samples

    # 4. mid
    sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)

    # 5. up
    for upsample_block in self.up_blocks:
        res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
        down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

        if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
            sample = upsample_block(
                hidden_states=sample,
                temb=emb,
                res_hidden_states_tuple=res_samples,
                encoder_hidden_states=encoder_hidden_states,
            )
        else:
            sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples)

    # 6. post-process
    # make sure hidden states is in float32
    # when running in half-precision
    #sample = self.conv_norm_out(sample.float()).type(sample.dtype)
    sample = self.conv_norm_out(sample)
    sample = self.conv_act(sample)
    sample = self.conv_out(sample)

    if not return_dict:
        return (sample,)

    return UNet2DConditionOutput(sample=sample)


def safety_forward(self, clip_input, images):
  return images, False


# Overriding the Stable Diffusion call method
@torch.no_grad()
def call(
    self,
    prompt: Union[str, List[str]],
    height: Optional[int] = 512,
    width: Optional[int] = 512,
    num_inference_steps: Optional[int] = 50,
    guidance_scale: Optional[float] = 7.5,
    eta: Optional[float] = 0.0,
    generator: Optional[torch.Generator] = None,
    latents: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    percent_noise: float = 0.7,
    **kwargs,
):
    if isinstance(prompt, str):
        batch_size = 1
    elif isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

    if height % 8 != 0 or width % 8 != 0:
        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

    # get prompt text embeddings
    text_input = self.tokenizer(
        prompt,
        padding="max_length",
        max_length=self.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0
    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance:
        max_length = text_input.input_ids.shape[-1]
        uncond_input = self.tokenizer(
            [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
        )
        uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # get the initial random noise unless the user supplied it

    # Unlike in other pipelines, latents need to be generated in the target device
    # for 1-to-1 results reproducibility with the CompVis implementation.
    # However this currently doesn't work in `mps`.
    latents_device = "cpu" if self.device.type == "mps" else self.device
    latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
    if latents is None:
        latents = torch.randn(
            latents_shape,
            generator=generator,
            device=latents_device,
        )
    else:
        if latents.shape != latents_shape:
            raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
    latents = latents.to(self.device)

    # set timesteps
    self.scheduler.set_timesteps(num_inference_steps)

    # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
    #if isinstance(self.scheduler, LMSDiscreteScheduler):
    #    latents = latents * self.scheduler.sigmas[0]

    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
    # and should be between [0, 1]
    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
    extra_step_kwargs = {}
    if accepts_eta:
        extra_step_kwargs["eta"] = eta

    
    for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):

        if t - 1 > 1000 * percent_noise:
            continue

        #print(t)

        # expand the latents if we are doing classifier free guidance
        latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
        #if isinstance(self.scheduler, LMSDiscreteScheduler):
        #    sigma = self.scheduler.sigmas[i]
        #    # the model input needs to be scaled to match the continuous ODE formulation in K-LMS
        #    latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)

        # predict the noise residual
        noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

        # perform guidance
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        # compute the previous noisy sample x_t -> x_t-1
        #if isinstance(self.scheduler, LMSDiscreteScheduler):
        #    latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample
        #else:
        latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
    

    # scale and decode the image latents with vae
    latents = 1 / 0.18215 * latents
    image = self.vae.decode(latents).sample

    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.cpu().permute(0, 2, 3, 1).numpy()

    # run safety checker
    safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
    image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)

    if output_type == "pil":
        image = self.numpy_to_pil(image)

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)


if COLAB:
    pipe.unet.forward = MethodType(forward, pipe.unet)
    pipe.safety_checker.forward = MethodType(safety_forward, pipe.safety_checker)
type(pipe).__call__ = call