Spaces:
Configuration error
Configuration error
File size: 21,327 Bytes
923fa3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
import guitarpro
from guitarpro import *
from matplotlib import pyplot as plt
import mgzip
import numpy as np
import os
import pickle
from tqdm import tqdm
import tensorflow as tf
from tensorflow import keras
from keras.callbacks import ModelCheckpoint
from keras.models import Sequential
from keras.layers import Activation, Dense, LSTM, Dropout, Flatten
from _Decompressor import SongWriter
# Define some constants:
# PITCH[i] = the pitch associated with midi note number i.
# For example, PITCH[69] = 'A4'
PITCH = {val : str(GuitarString(number=0, value=val)) for val in range(128)}
# MIDI[string] = the midi number associated with the note described by string.
# For example, MIDI['A4'] = 69.
MIDI = {str(GuitarString(number=0, value=val)) : val for val in range(128)}
# Generation helper methods:
def thirty_seconds_to_duration(count):
if count % 3 == 0:
# If the note is dotted, do 32 / (i * 2/3), and return isDotted = True.
return (48//count, True)
else:
# If the note is not dotted, to 32 / i, and return isDotted = False.
return (32//count, False)
def quantize_thirty_seconds(value):
# 32nd-note values of each fundamental type of note (not including 64th-notes, of course).
vals = np.array([32, # whole
24, # dotted half
16, # half
12, # dotted quarter
8, # quarter
6, # dotted eigth
4, # eigth
3, # dotted sixteenth
2, # sixteenth
1]) # thirty-second
list_out = []
for v in vals:
if v <= value:
list_out.append(thirty_seconds_to_duration(v))
value -= v
return np.array(list_out)
def adjust_to_4_4(prediction_output):
'''
Adjust prediction output to be in 4/4 time.
Then, separate the beats into measures.
'''
# This will be the prediction output
new_prediction_output = []
time = 0
for beat in prediction_output:
# Calculate the fraction of a measure encompassed by the current beat / chord.
beat_time = (1 / beat[1]) * (1 + 0.5 * beat[2])
# Calculate the fraction of a measure taken up by all notes in the measure.
# Calculate any residual time to see if this measure (in 4/4 time) is longer than 1 measure.
measure_time = time + beat_time
leftover_time = (measure_time) % 1
# If the measure count (i.e., the measure integer) has changed and there is significant left-over beat time:
if (int(measure_time) > int(time)) and (leftover_time > 1/128):
# Calculate the initial 32nd notes encompassed by this beat in the current measure.
this_measure_thirty_seconds = int(32 * (1 - time % 1))
# Calculate the remaining 32nd notes encompassed by this beat in the next measure.
next_measure_thirty_seconds = int(32 * leftover_time)
# Get the Duration object parameters for this measure and the next measure.
this_measure_durations = quantize_thirty_seconds(this_measure_thirty_seconds)
next_measure_durations = quantize_thirty_seconds(next_measure_thirty_seconds)
#print(f'{{ {32 / beat[1]}')
for duration_idx, duration in enumerate(this_measure_durations):
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
#print(time, '\t', time * 32)
chord = beat[0] if duration_idx == 0 else 'tied'
new_prediction_output.append((chord, duration[0], duration[1], beat[3]))
for duration in next_measure_durations:
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
#print(time, '\t', time * 32)
new_prediction_output.append(('tied', duration[0], duration[1], beat[3]))
continue
time += beat_time
new_prediction_output.append((beat[0], beat[1], beat[2], beat[3]))
#print(time, '\t', time * 32)
'''
# Code for debugging
time = 0
time2 = 0
idx = 0
for idx2, beat2 in enumerate(new_prediction_output[:100]):
beat = prediction_output[idx]
if time == time2:
print(beat[0], '\t', time, '\t\t', beat2[0], '\t', time2)
idx += 1
time += (1 / beat[1]) * (1 + 0.5 * beat[2])
else:
print('\t\t\t\t', beat2[0], '\t', time2)
time2 += (1 / beat2[1]) * (1 + 0.5 * beat2[2])
''';
# Use the previously calculated cumulative time as the number of measures in the new 4/4 song.
num_measures = int(np.ceil(time))
song = np.empty(num_measures, dtype=object)
time = 0
m_idx = 0
timestamps = []
for beat in new_prediction_output:
#print(time)
timestamps.append(time)
m_idx = int(time)
if song[m_idx] is None:
song[m_idx] = [beat]
else:
song[m_idx].append(beat)
time += (1 / beat[1]) * (1 + 0.5 * beat[2])
print(f'4/4 adjusted correctly: {set(range(num_measures)).issubset(set(timestamps))}')
return song
class Generator:
def __init__(self, num_tracks_to_generate=5, as_fingerings=True, sequence_length=100):
with mgzip.open('data\\notes_data.pickle.gz', 'rb') as filepath:
self.notes = pickle.load(filepath)
self.note_to_int = pickle.load(filepath)
self.int_to_note = pickle.load(filepath)
self.n_vocab = pickle.load(filepath)
self.NUM_TRACKS_TO_GENERATE = num_tracks_to_generate
self.as_fingerings = as_fingerings
self.sequence_length = sequence_length
with mgzip.open('data\\track_data.pickle.gz', 'rb') as filepath:
self.track_data = pickle.load(filepath)
self.model = keras.models.load_model('minigpt')
self.ints = np.array([self.note_to_int[x] for x in self.notes])
def generate_track(self, track_idx=None):
if track_idx is None:
# Choose a random track
track_idx = np.random.choice(len(self.track_data))
# Get the note indices corresponding to the beginning and ending of the track
song_note_idx_first = self.track_data.loc[track_idx]['noteStartIdx']
song_note_idx_last = self.track_data.loc[track_idx+1]['noteStartIdx']
# Choose a random starting point within the track
start_idx = np.random.randint(low=song_note_idx_first,
high=song_note_idx_last)
# Choose a number of initial notes to select from the track, at most 100.
#num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
# Select the initial notes (tokens)
start_tokens = [_ for _ in self.ints[start_idx:start_idx+num_initial_notes]]
max_tokens = 100
def sample_from(logits, top_k=10):
logits, indices = tf.math.top_k(logits, k=top_k, sorted=True)
indices = np.asarray(indices).astype("int32")
preds = keras.activations.softmax(tf.expand_dims(logits, 0))[0]
preds = np.asarray(preds).astype("float32")
return np.random.choice(indices, p=preds)
num_tokens_generated = 0
tokens_generated = []
while num_tokens_generated <= max_tokens:
pad_len = self.sequence_length - len(start_tokens)
sample_index = len(start_tokens) - 1
if pad_len < 0:
x = start_tokens[:self.sequence_length]
sample_index = self.sequence_length - 1
elif pad_len > 0:
x = start_tokens + [0] * pad_len
else:
x = start_tokens
x = np.array([x])
y, _ = self.model.predict(x)
sample_token = sample_from(y[0][sample_index])
tokens_generated.append(sample_token)
start_tokens.append(sample_token)
num_tokens_generated = len(tokens_generated)
generated_notes = [self.int_to_note[num] for num in np.concatenate((start_tokens, tokens_generated))]
return track_idx, generated_notes
def generate_track_batch(self, artist=None):
self.track_indices = np.zeros(self.NUM_TRACKS_TO_GENERATE)
self.tracks = np.zeros(self.NUM_TRACKS_TO_GENERATE, dtype=object)
for i in tqdm(range(self.NUM_TRACKS_TO_GENERATE)):
if artist is None:
idx, t = self.generate_track()
else:
idx, t = self.generate_track(track_idx=np.random.choice(list(self.track_data[self.track_data.artist==artist].index)))
self.track_indices[i] = idx
self.tracks[i] = t
def save_tracks(self, filepath='_generation.gp5'):
songWriter = SongWriter(initialTempo=self.track_data.loc[self.track_indices[0]]['tempo'])
for idx in range(len(self.tracks)):
new_track = adjust_to_4_4(self.tracks[idx])
# Get the tempo and tuning (lowest string note) of the song:
#print( track_data.loc[track_indices[idx]])
tempo = self.track_data.loc[self.track_indices[idx]]['tempo']
instrument = self.track_data.loc[self.track_indices[idx]]['instrument']
name = self.track_data.loc[self.track_indices[idx]]['song']
lowest_string = self.track_data.loc[self.track_indices[idx]]['tuning']
if not self.as_fingerings:
# Get all the unique pitch values from the new track
pitchnames = set.union(*[set([beat[0].split('_')[0] for beat in measure]) for measure in new_track])
pitchnames.discard('rest') # Ignore rests
pitchnames.discard('tied') # Ignore tied notes
pitchnames.discard('dead') # Ignore dead/ghost notes
lowest_string = min([MIDI[pitch] for pitch in pitchnames]) # Get the lowest MIDI value / pitch
lowest_string = min(lowest_string, MIDI['E2']) # Don't allow any tunings higher than standard.
# Standard tuning
tuning = {1: MIDI['E4'],
2: MIDI['B3'],
3: MIDI['G3'],
4: MIDI['D3'],
5: MIDI['A2'],
6: MIDI['E2']}
if lowest_string <= MIDI['B1']:
# 7-string guitar case
tuning[7] = MIDI['B1']
downtune = MIDI['B1'] - lowest_string
else:
# downtune the tuning by however much is necessary.
downtune = MIDI['E2'] - lowest_string
tuning = {k: v - downtune for k, v in tuning.items()} # Adjust to the new tuning
# Write the track to the song writer
songWriter.decompress_track(new_track, tuning, tempo=tempo, instrument=instrument, name=name, as_fingerings=self.as_fingerings)
songWriter.write(filepath)
print('Finished')
'''
def init_generator():
global NUM_TRACKS_TO_GENERATE, notes, note_to_int, int_to_note, n_vocab, track_data, model, ints
with mgzip.open('data\\notes_data.pickle.gz', 'rb') as filepath:
notes = pickle.load(filepath)
note_to_int = pickle.load(filepath)
int_to_note = pickle.load(filepath)
n_vocab = pickle.load(filepath)
with mgzip.open('data\\track_data.pickle.gz', 'rb') as filepath:
track_data = pickle.load(filepath)
#with mgzip.open('output\\generated_songs.pickle.gz', 'rb') as filepath:
# track_indices = pickle.load(filepath)
# tracks = pickle.load(filepath)
model = keras.models.load_model('minigpt')
ints = np.array([note_to_int[x] for x in notes])
def generate_track(track_idx=None):
global track_data, ints, int_to_note
if track_idx is None:
# Choose a random track
track_idx = np.random.choice(len(track_data))
# Get the note indices corresponding to the beginning and ending of the track
song_note_idx_first = track_data.loc[track_idx]['noteStartIdx']
song_note_idx_last = track_data.loc[track_idx+1]['noteStartIdx']
# Choose a random starting point within the track
start_idx = np.random.randint(low=song_note_idx_first,
high=song_note_idx_last)
# Choose a number of initial notes to select from the track, at most 100.
#num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
# Select the initial notes (tokens)
start_tokens = [_ for _ in ints[start_idx:start_idx+num_initial_notes]]
max_tokens = 100
def sample_from(logits, top_k=10):
logits, indices = tf.math.top_k(logits, k=top_k, sorted=True)
indices = np.asarray(indices).astype("int32")
preds = keras.activations.softmax(tf.expand_dims(logits, 0))[0]
preds = np.asarray(preds).astype("float32")
return np.random.choice(indices, p=preds)
num_tokens_generated = 0
tokens_generated = []
while num_tokens_generated <= max_tokens:
pad_len = maxlen - len(start_tokens)
sample_index = len(start_tokens) - 1
if pad_len < 0:
x = start_tokens[:maxlen]
sample_index = maxlen - 1
elif pad_len > 0:
x = start_tokens + [0] * pad_len
else:
x = start_tokens
x = np.array([x])
y, _ = model.predict(x)
sample_token = sample_from(y[0][sample_index])
tokens_generated.append(sample_token)
start_tokens.append(sample_token)
num_tokens_generated = len(tokens_generated)
generated_notes = [int_to_note[num] for num in np.concatenate((start_tokens, tokens_generated))]
return track_idx, generated_notes
def generate_track_batch(artist=None):
global track_indices, tracks, NUM_TRACKS_TO_GENERATE, track_data
track_indices = np.zeros(NUM_TRACKS_TO_GENERATE)
tracks = np.zeros(NUM_TRACKS_TO_GENERATE, dtype=object)
for i in tqdm(range(NUM_TRACKS_TO_GENERATE)):
if artist is None:
idx, t = generate_track()
else:
idx, t = generate_track(track_idx=np.random.choice(list(track_data[track_data.artist==artist].index)))
track_indices[i] = idx
tracks[i] = t
# Generation helper methods:
def thirty_seconds_to_duration(count):
if count % 3 == 0:
# If the note is dotted, do 32 / (i * 2/3), and return isDotted = True.
return (48//count, True)
else:
# If the note is not dotted, to 32 / i, and return isDotted = False.
return (32//count, False)
def quantize_thirty_seconds(value):
# 32nd-note values of each fundamental type of note (not including 64th-notes, of course).
vals = np.array([32, # whole
24, # dotted half
16, # half
12, # dotted quarter
8, # quarter
6, # dotted eigth
4, # eigth
3, # dotted sixteenth
2, # sixteenth
1]) # thirty-second
list_out = []
for v in vals:
if v <= value:
list_out.append(thirty_seconds_to_duration(v))
value -= v
return np.array(list_out)
def adjust_to_4_4(prediction_output):
#Adjust prediction output to be in 4/4 time.
#Then, separate the beats into measures.
# This will be the prediction output
new_prediction_output = []
time = 0
for beat in prediction_output:
# Calculate the fraction of a measure encompassed by the current beat / chord.
beat_time = (1 / beat[1]) * (1 + 0.5 * beat[2])
# Calculate the fraction of a measure taken up by all notes in the measure.
# Calculate any residual time to see if this measure (in 4/4 time) is longer than 1 measure.
measure_time = time + beat_time
leftover_time = (measure_time) % 1
# If the measure count (i.e., the measure integer) has changed and there is significant left-over beat time:
if (int(measure_time) > int(time)) and (leftover_time > 1/128):
# Calculate the initial 32nd notes encompassed by this beat in the current measure.
this_measure_thirty_seconds = int(32 * (1 - time % 1))
# Calculate the remaining 32nd notes encompassed by this beat in the next measure.
next_measure_thirty_seconds = int(32 * leftover_time)
# Get the Duration object parameters for this measure and the next measure.
this_measure_durations = quantize_thirty_seconds(this_measure_thirty_seconds)
next_measure_durations = quantize_thirty_seconds(next_measure_thirty_seconds)
#print(f'{{ {32 / beat[1]}')
for duration_idx, duration in enumerate(this_measure_durations):
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
#print(time, '\t', time * 32)
chord = beat[0] if duration_idx == 0 else 'tied'
new_prediction_output.append((chord, duration[0], duration[1]))
for duration in next_measure_durations:
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
#print(time, '\t', time * 32)
new_prediction_output.append(('tied', duration[0], duration[1]))
continue
time += beat_time
new_prediction_output.append((beat[0], beat[1], beat[2]))
#print(time, '\t', time * 32)
# Code for debugging
#time = 0
#time2 = 0
#idx = 0
#for idx2, beat2 in enumerate(new_prediction_output[:100]):
# beat = prediction_output[idx]
# if time == time2:
# print(beat[0], '\t', time, '\t\t', beat2[0], '\t', time2)
# idx += 1
# time += (1 / beat[1]) * (1 + 0.5 * beat[2])
# else:
# print('\t\t\t\t', beat2[0], '\t', time2)
# time2 += (1 / beat2[1]) * (1 + 0.5 * beat2[2])
# Use the previously calculated cumulative time as the number of measures in the new 4/4 song.
num_measures = int(np.ceil(time))
song = np.empty(num_measures, dtype=object)
time = 0
m_idx = 0
timestamps = []
for beat in new_prediction_output:
#print(time)
timestamps.append(time)
m_idx = int(time)
if song[m_idx] is None:
song[m_idx] = [beat]
else:
song[m_idx].append(beat)
time += (1 / beat[1]) * (1 + 0.5 * beat[2])
print(f'4/4 adjusted correctly: {set(range(num_measures)).issubset(set(timestamps))}')
return song
def save_tracks(filepath='_generation.gp5'):
global track_data, track_indice, tracks
songWriter = SongWriter(initialTempo=track_data.loc[track_indices[0]]['tempo'])
for idx in range(len(tracks)):
new_track = adjust_to_4_4(tracks[idx])
# Get the tempo and tuning (lowest string note) of the song:
#print( track_data.loc[track_indices[idx]])
tempo = track_data.loc[track_indices[idx]]['tempo']
instrument = track_data.loc[track_indices[idx]]['instrument']
name = track_data.loc[track_indices[idx]]['song']
lowest_string = track_data.loc[track_indices[idx]]['tuning']
if not as_fingerings:
# Get all the unique pitch values from the new track
pitchnames = set.union(*[set([beat[0].split('_')[0] for beat in measure]) for measure in new_track])
pitchnames.discard('rest') # Ignore rests
pitchnames.discard('tied') # Ignore tied notes
pitchnames.discard('dead') # Ignore dead/ghost notes
lowest_string = min([MIDI[pitch] for pitch in pitchnames]) # Get the lowest MIDI value / pitch
lowest_string = min(lowest_string, MIDI['E2']) # Don't allow any tunings higher than standard.
# Standard tuning
tuning = {1: MIDI['E4'],
2: MIDI['B3'],
3: MIDI['G3'],
4: MIDI['D3'],
5: MIDI['A2'],
6: MIDI['E2']}
if lowest_string <= MIDI['B1']:
# 7-string guitar case
tuning[7] = MIDI['B1']
downtune = MIDI['B1'] - lowest_string
else:
# downtune the tuning by however much is necessary.
downtune = MIDI['E2'] - lowest_string
tuning = {k: v - downtune for k, v in tuning.items()} # Adjust to the new tuning
# Write the track to the song writer
songWriter.decompress_track(new_track, tuning, tempo=tempo, instrument=instrument, name=name, as_fingerings=as_fingerings)
songWriter.write(filepath)
print('Finished')
''' |