from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from gradio import gr MODEL_NAME = "allenai/cosmo-xl" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) def generate_text(situation, instructions, prompt): """ Generate text using the specified model and inputs. Args: situation: A short description of the context or situation. instructions: Specific instructions or constraints for text generation. prompt: The initial text prompt for the model to start from. Returns: The generated text. """ inputs = tokenizer([situation, instructions, prompt], return_tensors="pt") outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text interface = gr.Interface( generate_text, [ gr.Textbox(label="Situation"), gr.Textbox(label="Instructions"), gr.Textbox(label="Prompt"), ], "textbox", theme="huggingface", title="Cosmopolitan Conversationalist", description="Generate creative text with context and instructions!", ) interface.launch(server_name="Cosmopolitan_Conversationalist")