|
import os |
|
import subprocess as sp |
|
import sys |
|
import time |
|
from datetime import timedelta |
|
from functools import lru_cache |
|
from pathlib import Path |
|
from random import Random |
|
|
|
import click |
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
from hydra import compose, initialize |
|
from hydra.utils import instantiate |
|
from lightning import LightningModule |
|
from loguru import logger |
|
from omegaconf import OmegaConf |
|
|
|
from tools.file import AUDIO_EXTENSIONS, list_files, load_filelist |
|
|
|
|
|
OmegaConf.register_new_resolver("eval", eval) |
|
|
|
|
|
|
|
|
|
RANK = int(os.environ.get("SLURM_PROCID", 0)) |
|
WORLD_SIZE = int(os.environ.get("SLURM_NTASKS", 1)) |
|
|
|
logger_format = ( |
|
"<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | " |
|
"<level>{level: <8}</level> | " |
|
"<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> | " |
|
"{extra[rank]} - <level>{message}</level>" |
|
) |
|
logger.configure(extra={"rank": f"RANK: {RANK} / {WORLD_SIZE}"}) |
|
logger.remove() |
|
logger.add(sys.stderr, format=logger_format) |
|
|
|
|
|
@lru_cache(maxsize=1) |
|
def get_model( |
|
config_name: str = "firefly_gan_vq", |
|
checkpoint_path: str = "checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", |
|
device: str | torch.device = "cuda", |
|
): |
|
with initialize(version_base="1.3", config_path="../../fish_speech/configs"): |
|
cfg = compose(config_name=config_name) |
|
|
|
model = instantiate(cfg) |
|
state_dict = torch.load( |
|
checkpoint_path, |
|
map_location=device, |
|
) |
|
if "state_dict" in state_dict: |
|
state_dict = state_dict["state_dict"] |
|
|
|
if any("generator" in k for k in state_dict): |
|
state_dict = { |
|
k.replace("generator.", ""): v |
|
for k, v in state_dict.items() |
|
if "generator." in k |
|
} |
|
|
|
model.load_state_dict(state_dict, strict=False) |
|
model.eval() |
|
model.to(device) |
|
|
|
logger.info(f"Loaded model") |
|
return model |
|
|
|
|
|
@torch.inference_mode() |
|
def process_batch(files: list[Path], model) -> float: |
|
wavs = [] |
|
audio_lengths = [] |
|
new_files = [] |
|
max_length = total_time = 0 |
|
|
|
for file in files: |
|
try: |
|
wav, sr = torchaudio.load( |
|
str(file), backend="sox" if sys.platform == "linux" else "soundfile" |
|
) |
|
except Exception as e: |
|
logger.error(f"Error reading {file}: {e}") |
|
continue |
|
|
|
if wav.shape[0] > 1: |
|
wav = wav.mean(dim=0, keepdim=True) |
|
|
|
wav = torchaudio.functional.resample( |
|
wav.cuda(), sr, model.spec_transform.sample_rate |
|
)[0] |
|
total_time += len(wav) / model.spec_transform.sample_rate |
|
max_length = max(max_length, len(wav)) |
|
|
|
wavs.append(wav) |
|
audio_lengths.append(len(wav)) |
|
new_files.append(file) |
|
|
|
files = new_files |
|
|
|
|
|
for i, wav in enumerate(wavs): |
|
wavs[i] = torch.nn.functional.pad(wav, (0, max_length - len(wav)), "constant") |
|
|
|
audios = torch.stack(wavs, dim=0)[:, None] |
|
audio_lengths = torch.tensor(audio_lengths, device=model.device, dtype=torch.long) |
|
|
|
|
|
indices, feature_lengths = model.encode(audios, audio_lengths) |
|
|
|
|
|
outputs = indices.cpu().numpy() |
|
|
|
for file, length, feature, audio_length in zip( |
|
files, feature_lengths, outputs, audio_lengths |
|
): |
|
feature = feature[:, :length] |
|
|
|
|
|
with open(file.with_suffix(".npy"), "wb") as f: |
|
np.save(f, feature) |
|
|
|
return total_time |
|
|
|
|
|
@click.command() |
|
@click.argument("folder") |
|
@click.option("--num-workers", default=1) |
|
@click.option("--config-name", default="firefly_gan_vq") |
|
@click.option( |
|
"--checkpoint-path", |
|
default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", |
|
) |
|
@click.option("--batch-size", default=64) |
|
@click.option("--filelist", default=None, type=Path) |
|
def main( |
|
folder: str, |
|
num_workers: int, |
|
config_name: str, |
|
checkpoint_path: str, |
|
batch_size: int, |
|
filelist: Path, |
|
): |
|
if num_workers > 1 and WORLD_SIZE != num_workers: |
|
assert WORLD_SIZE == 1, "You should either use SLURM or this launcher, not both" |
|
|
|
logger.info(f"Spawning {num_workers} workers") |
|
|
|
if torch.cuda.is_available(): |
|
visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES", None) |
|
if visible_devices is None: |
|
visible_devices = list(range(torch.cuda.device_count())) |
|
else: |
|
visible_devices = visible_devices.split(",") |
|
else: |
|
|
|
visible_devices = [""] |
|
|
|
processes = [] |
|
for i in range(num_workers): |
|
env = os.environ.copy() |
|
env["CUDA_VISIBLE_DEVICES"] = str(visible_devices[i % len(visible_devices)]) |
|
env["SLURM_PROCID"] = str(i) |
|
env["SLURM_NTASKS"] = str(num_workers) |
|
|
|
processes.append( |
|
sp.Popen( |
|
[sys.executable] + sys.argv.copy(), |
|
env=env, |
|
) |
|
) |
|
|
|
for p in processes: |
|
p.wait() |
|
|
|
logger.info(f"All workers finished") |
|
return |
|
|
|
|
|
logger.info(f"Starting worker") |
|
if filelist: |
|
files = [i[0] for i in load_filelist(filelist)] |
|
else: |
|
files = list_files(folder, AUDIO_EXTENSIONS, recursive=True, sort=False) |
|
|
|
print(f"Found {len(files)} files") |
|
files = [Path(f) for f in files if not Path(f).with_suffix(".npy").exists()] |
|
|
|
total_files = len(files) |
|
files = files[RANK::WORLD_SIZE] |
|
logger.info(f"Processing {len(files)}/{total_files} files") |
|
|
|
|
|
total_time = 0 |
|
begin_time = time.time() |
|
processed_files = 0 |
|
model = get_model(config_name, checkpoint_path) |
|
|
|
for n_batch, idx in enumerate(range(0, len(files), batch_size)): |
|
batch = files[idx : idx + batch_size] |
|
batch_time = process_batch(batch, model) |
|
|
|
total_time += batch_time |
|
processed_files += len(batch) |
|
|
|
if (n_batch + 1) % 10 == 0: |
|
eta = ( |
|
(time.time() - begin_time) |
|
/ processed_files |
|
* (len(files) - processed_files) |
|
) |
|
logger.info( |
|
f"Processed {processed_files} files, {total_time / 3600:.2f} hours of audio, " |
|
+ f"ETA: {timedelta(seconds=round(eta))}s" |
|
) |
|
|
|
logger.info( |
|
f"Finished processing {len(files)} files, {total_time / 3600:.2f} hours of audio" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|