|
import os |
|
|
|
os.environ["USE_LIBUV"] = "0" |
|
import sys |
|
from typing import Optional |
|
|
|
import hydra |
|
import lightning as L |
|
import pyrootutils |
|
import torch |
|
from lightning import Callback, LightningDataModule, LightningModule, Trainer |
|
from lightning.pytorch.loggers import Logger |
|
from lightning.pytorch.strategies import DDPStrategy |
|
from omegaconf import DictConfig, OmegaConf |
|
|
|
os.environ.pop("SLURM_NTASKS", None) |
|
os.environ.pop("SLURM_JOB_NAME", None) |
|
os.environ.pop("SLURM_NTASKS_PER_NODE", None) |
|
|
|
|
|
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) |
|
|
|
|
|
torch.set_float32_matmul_precision("high") |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
|
|
OmegaConf.register_new_resolver("eval", eval) |
|
|
|
import fish_speech.utils as utils |
|
|
|
log = utils.RankedLogger(__name__, rank_zero_only=True) |
|
|
|
|
|
@utils.task_wrapper |
|
def train(cfg: DictConfig) -> tuple[dict, dict]: |
|
"""Trains the model. Can additionally evaluate on a testset, using best weights obtained during |
|
training. |
|
This method is wrapped in optional @task_wrapper decorator, that controls the behavior during |
|
failure. Useful for multiruns, saving info about the crash, etc. |
|
Args: |
|
cfg (DictConfig): Configuration composed by Hydra. |
|
Returns: |
|
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects. |
|
""" |
|
|
|
|
|
if cfg.get("seed"): |
|
L.seed_everything(cfg.seed, workers=False) |
|
|
|
if cfg.get("deterministic"): |
|
torch.use_deterministic_algorithms(True) |
|
|
|
log.info(f"Instantiating datamodule <{cfg.data._target_}>") |
|
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data) |
|
|
|
log.info(f"Instantiating model <{cfg.model._target_}>") |
|
model: LightningModule = hydra.utils.instantiate(cfg.model) |
|
|
|
log.info("Instantiating callbacks...") |
|
callbacks: list[Callback] = utils.instantiate_callbacks(cfg.get("callbacks")) |
|
|
|
log.info("Instantiating loggers...") |
|
logger: list[Logger] = utils.instantiate_loggers(cfg.get("logger")) |
|
|
|
log.info(f"Instantiating trainer <{cfg.trainer._target_}>") |
|
trainer: Trainer = hydra.utils.instantiate( |
|
cfg.trainer, |
|
callbacks=callbacks, |
|
logger=logger, |
|
) |
|
|
|
object_dict = { |
|
"cfg": cfg, |
|
"datamodule": datamodule, |
|
"model": model, |
|
"callbacks": callbacks, |
|
"logger": logger, |
|
"trainer": trainer, |
|
} |
|
|
|
if logger: |
|
log.info("Logging hyperparameters!") |
|
utils.log_hyperparameters(object_dict) |
|
|
|
if cfg.get("train"): |
|
log.info("Starting training!") |
|
|
|
ckpt_path = cfg.get("ckpt_path") |
|
auto_resume = False |
|
|
|
resume_ckpt_path = utils.get_latest_checkpoint(cfg.paths.ckpt_dir) |
|
if resume_ckpt_path is not None: |
|
ckpt_path = resume_ckpt_path |
|
auto_resume = True |
|
|
|
if ckpt_path is not None: |
|
log.info(f"Resuming from checkpoint: {ckpt_path}") |
|
|
|
|
|
if cfg.get("resume_weights_only") and auto_resume is False: |
|
log.info("Resuming weights only!") |
|
ckpt = torch.load(ckpt_path, map_location=model.device) |
|
if "state_dict" in ckpt: |
|
ckpt = ckpt["state_dict"] |
|
err = model.load_state_dict(ckpt, strict=False) |
|
log.info(f"Error loading state dict: {err}") |
|
ckpt_path = None |
|
|
|
trainer.fit(model=model, datamodule=datamodule, ckpt_path=ckpt_path) |
|
|
|
train_metrics = trainer.callback_metrics |
|
|
|
if cfg.get("test"): |
|
log.info("Starting testing!") |
|
ckpt_path = trainer.checkpoint_callback.best_model_path |
|
if ckpt_path == "": |
|
log.warning("Best ckpt not found! Using current weights for testing...") |
|
ckpt_path = cfg.get("ckpt_path") |
|
|
|
trainer.test(model=model, datamodule=datamodule, ckpt_path=ckpt_path) |
|
log.info(f"Best ckpt path: {ckpt_path}") |
|
|
|
test_metrics = trainer.callback_metrics |
|
|
|
|
|
metric_dict = {**train_metrics, **test_metrics} |
|
|
|
return metric_dict, object_dict |
|
|
|
|
|
@hydra.main( |
|
version_base="1.3", config_path="./configs", config_name="llama_pretrain.yaml" |
|
) |
|
def main(cfg: DictConfig) -> Optional[float]: |
|
|
|
train(cfg) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|