|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import json |
|
import logging |
|
import os.path |
|
import random |
|
import re |
|
import string |
|
import time |
|
|
|
import numpy as np |
|
import torch |
|
from funasr.download.download_model_from_hub import download_model |
|
from funasr.download.file import download_from_url |
|
from funasr.register import tables |
|
from funasr.train_utils.load_pretrained_model import load_pretrained_model |
|
from funasr.train_utils.set_all_random_seed import set_all_random_seed |
|
from funasr.utils import export_utils, misc |
|
from funasr.utils.load_utils import load_audio_text_image_video, load_bytes |
|
from funasr.utils.misc import deep_update |
|
from funasr.utils.timestamp_tools import timestamp_sentence, timestamp_sentence_en |
|
from tqdm import tqdm |
|
|
|
from .vad_utils import merge_vad, slice_padding_audio_samples |
|
|
|
try: |
|
from funasr.models.campplus.cluster_backend import ClusterBackend |
|
from funasr.models.campplus.utils import distribute_spk, postprocess, sv_chunk |
|
except: |
|
pass |
|
|
|
|
|
def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None): |
|
""" """ |
|
data_list = [] |
|
key_list = [] |
|
filelist = [".scp", ".txt", ".json", ".jsonl", ".text"] |
|
|
|
chars = string.ascii_letters + string.digits |
|
if isinstance(data_in, str): |
|
if data_in.startswith("http://") or data_in.startswith("https://"): |
|
data_in = download_from_url(data_in) |
|
|
|
if isinstance(data_in, str) and os.path.exists( |
|
data_in |
|
): |
|
_, file_extension = os.path.splitext(data_in) |
|
file_extension = file_extension.lower() |
|
if file_extension in filelist: |
|
with open(data_in, encoding="utf-8") as fin: |
|
for line in fin: |
|
key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) |
|
if data_in.endswith( |
|
".jsonl" |
|
): |
|
lines = json.loads(line.strip()) |
|
data = lines["source"] |
|
key = data["key"] if "key" in data else key |
|
else: |
|
lines = line.strip().split(maxsplit=1) |
|
data = lines[1] if len(lines) > 1 else lines[0] |
|
key = lines[0] if len(lines) > 1 else key |
|
|
|
data_list.append(data) |
|
key_list.append(key) |
|
else: |
|
if key is None: |
|
|
|
key = misc.extract_filename_without_extension(data_in) |
|
data_list = [data_in] |
|
key_list = [key] |
|
elif isinstance(data_in, (list, tuple)): |
|
if data_type is not None and isinstance( |
|
data_type, (list, tuple) |
|
): |
|
data_list_tmp = [] |
|
for data_in_i, data_type_i in zip(data_in, data_type): |
|
key_list, data_list_i = prepare_data_iterator( |
|
data_in=data_in_i, data_type=data_type_i |
|
) |
|
data_list_tmp.append(data_list_i) |
|
data_list = [] |
|
for item in zip(*data_list_tmp): |
|
data_list.append(item) |
|
else: |
|
|
|
data_list = data_in |
|
key_list = [] |
|
for data_i in data_in: |
|
if isinstance(data_i, str) and os.path.exists(data_i): |
|
key = misc.extract_filename_without_extension(data_i) |
|
else: |
|
if key is None: |
|
key = "rand_key_" + "".join( |
|
random.choice(chars) for _ in range(13) |
|
) |
|
key_list.append(key) |
|
|
|
else: |
|
if isinstance(data_in, bytes): |
|
data_in = load_bytes(data_in) |
|
if key is None: |
|
key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) |
|
data_list = [data_in] |
|
key_list = [key] |
|
|
|
return key_list, data_list |
|
|
|
|
|
class AutoModel: |
|
|
|
def __init__(self, **kwargs): |
|
|
|
try: |
|
from funasr.utils.version_checker import check_for_update |
|
|
|
print( |
|
"Check update of funasr, and it would cost few times. You may disable it by set `disable_update=True` in AutoModel" |
|
) |
|
check_for_update(disable=kwargs.get("disable_update", False)) |
|
except: |
|
pass |
|
|
|
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper()) |
|
logging.basicConfig(level=log_level) |
|
|
|
model, kwargs = self.build_model(**kwargs) |
|
|
|
|
|
vad_model = kwargs.get("vad_model", None) |
|
vad_kwargs = ( |
|
{} if kwargs.get("vad_kwargs", {}) is None else kwargs.get("vad_kwargs", {}) |
|
) |
|
if vad_model is not None: |
|
logging.info("Building VAD model.") |
|
vad_kwargs["model"] = vad_model |
|
vad_kwargs["model_revision"] = kwargs.get("vad_model_revision", "master") |
|
vad_kwargs["device"] = kwargs["device"] |
|
vad_model, vad_kwargs = self.build_model(**vad_kwargs) |
|
|
|
|
|
punc_model = kwargs.get("punc_model", None) |
|
punc_kwargs = ( |
|
{} |
|
if kwargs.get("punc_kwargs", {}) is None |
|
else kwargs.get("punc_kwargs", {}) |
|
) |
|
if punc_model is not None: |
|
logging.info("Building punc model.") |
|
punc_kwargs["model"] = punc_model |
|
punc_kwargs["model_revision"] = kwargs.get("punc_model_revision", "master") |
|
punc_kwargs["device"] = kwargs["device"] |
|
punc_model, punc_kwargs = self.build_model(**punc_kwargs) |
|
|
|
|
|
spk_model = kwargs.get("spk_model", None) |
|
spk_kwargs = ( |
|
{} if kwargs.get("spk_kwargs", {}) is None else kwargs.get("spk_kwargs", {}) |
|
) |
|
if spk_model is not None: |
|
logging.info("Building SPK model.") |
|
spk_kwargs["model"] = spk_model |
|
spk_kwargs["model_revision"] = kwargs.get("spk_model_revision", "master") |
|
spk_kwargs["device"] = kwargs["device"] |
|
spk_model, spk_kwargs = self.build_model(**spk_kwargs) |
|
self.cb_model = ClusterBackend().to(kwargs["device"]) |
|
spk_mode = kwargs.get("spk_mode", "punc_segment") |
|
if spk_mode not in ["default", "vad_segment", "punc_segment"]: |
|
logging.error( |
|
"spk_mode should be one of default, vad_segment and punc_segment." |
|
) |
|
self.spk_mode = spk_mode |
|
|
|
self.kwargs = kwargs |
|
self.model = model |
|
self.vad_model = vad_model |
|
self.vad_kwargs = vad_kwargs |
|
self.punc_model = punc_model |
|
self.punc_kwargs = punc_kwargs |
|
self.spk_model = spk_model |
|
self.spk_kwargs = spk_kwargs |
|
self.model_path = kwargs.get("model_path") |
|
|
|
@staticmethod |
|
def build_model(**kwargs): |
|
assert "model" in kwargs |
|
if "model_conf" not in kwargs: |
|
logging.info( |
|
"download models from model hub: {}".format(kwargs.get("hub", "ms")) |
|
) |
|
kwargs = download_model(**kwargs) |
|
|
|
set_all_random_seed(kwargs.get("seed", 0)) |
|
|
|
device = kwargs.get("device", "cuda") |
|
if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0: |
|
device = "cpu" |
|
kwargs["batch_size"] = 1 |
|
kwargs["device"] = device |
|
|
|
torch.set_num_threads(kwargs.get("ncpu", 4)) |
|
|
|
|
|
tokenizer = kwargs.get("tokenizer", None) |
|
if tokenizer is not None: |
|
tokenizer_class = tables.tokenizer_classes.get(tokenizer) |
|
tokenizer = tokenizer_class(**kwargs.get("tokenizer_conf", {})) |
|
kwargs["token_list"] = ( |
|
tokenizer.token_list if hasattr(tokenizer, "token_list") else None |
|
) |
|
kwargs["token_list"] = ( |
|
tokenizer.get_vocab() |
|
if hasattr(tokenizer, "get_vocab") |
|
else kwargs["token_list"] |
|
) |
|
vocab_size = ( |
|
len(kwargs["token_list"]) if kwargs["token_list"] is not None else -1 |
|
) |
|
if vocab_size == -1 and hasattr(tokenizer, "get_vocab_size"): |
|
vocab_size = tokenizer.get_vocab_size() |
|
else: |
|
vocab_size = -1 |
|
kwargs["tokenizer"] = tokenizer |
|
|
|
|
|
frontend = kwargs.get("frontend", None) |
|
kwargs["input_size"] = None |
|
if frontend is not None: |
|
frontend_class = tables.frontend_classes.get(frontend) |
|
frontend = frontend_class(**kwargs.get("frontend_conf", {})) |
|
kwargs["input_size"] = ( |
|
frontend.output_size() if hasattr(frontend, "output_size") else None |
|
) |
|
kwargs["frontend"] = frontend |
|
|
|
model_class = tables.model_classes.get(kwargs["model"]) |
|
assert model_class is not None, f'{kwargs["model"]} is not registered' |
|
model_conf = {} |
|
deep_update(model_conf, kwargs.get("model_conf", {})) |
|
deep_update(model_conf, kwargs) |
|
model = model_class(**model_conf, vocab_size=vocab_size) |
|
|
|
|
|
init_param = kwargs.get("init_param", None) |
|
if init_param is not None: |
|
if os.path.exists(init_param): |
|
logging.info(f"Loading pretrained params from {init_param}") |
|
load_pretrained_model( |
|
model=model, |
|
path=init_param, |
|
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True), |
|
oss_bucket=kwargs.get("oss_bucket", None), |
|
scope_map=kwargs.get("scope_map", []), |
|
excludes=kwargs.get("excludes", None), |
|
) |
|
else: |
|
print(f"error, init_param does not exist!: {init_param}") |
|
|
|
|
|
if kwargs.get("fp16", False): |
|
model.to(torch.float16) |
|
elif kwargs.get("bf16", False): |
|
model.to(torch.bfloat16) |
|
model.to(device) |
|
|
|
if not kwargs.get("disable_log", True): |
|
tables.print() |
|
|
|
return model, kwargs |
|
|
|
def __call__(self, *args, **cfg): |
|
kwargs = self.kwargs |
|
deep_update(kwargs, cfg) |
|
res = self.model(*args, kwargs) |
|
return res |
|
|
|
def generate(self, input, input_len=None, **cfg): |
|
if self.vad_model is None: |
|
return self.inference(input, input_len=input_len, **cfg) |
|
|
|
else: |
|
return self.inference_with_vad(input, input_len=input_len, **cfg) |
|
|
|
def inference( |
|
self, input, input_len=None, model=None, kwargs=None, key=None, **cfg |
|
): |
|
kwargs = self.kwargs if kwargs is None else kwargs |
|
if "cache" in kwargs: |
|
kwargs.pop("cache") |
|
deep_update(kwargs, cfg) |
|
model = self.model if model is None else model |
|
model.eval() |
|
|
|
batch_size = kwargs.get("batch_size", 1) |
|
|
|
|
|
|
|
key_list, data_list = prepare_data_iterator( |
|
input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key |
|
) |
|
|
|
speed_stats = {} |
|
asr_result_list = [] |
|
num_samples = len(data_list) |
|
disable_pbar = self.kwargs.get("disable_pbar", False) |
|
pbar = ( |
|
tqdm(colour="blue", total=num_samples, dynamic_ncols=True) |
|
if not disable_pbar |
|
else None |
|
) |
|
time_speech_total = 0.0 |
|
time_escape_total = 0.0 |
|
for beg_idx in range(0, num_samples, batch_size): |
|
end_idx = min(num_samples, beg_idx + batch_size) |
|
data_batch = data_list[beg_idx:end_idx] |
|
key_batch = key_list[beg_idx:end_idx] |
|
batch = {"data_in": data_batch, "key": key_batch} |
|
|
|
if (end_idx - beg_idx) == 1 and kwargs.get( |
|
"data_type", None |
|
) == "fbank": |
|
batch["data_in"] = data_batch[0] |
|
batch["data_lengths"] = input_len |
|
|
|
time1 = time.perf_counter() |
|
with torch.no_grad(): |
|
res = model.inference(**batch, **kwargs) |
|
if isinstance(res, (list, tuple)): |
|
results = res[0] if len(res) > 0 else [{"text": ""}] |
|
meta_data = res[1] if len(res) > 1 else {} |
|
time2 = time.perf_counter() |
|
|
|
asr_result_list.extend(results) |
|
|
|
|
|
batch_data_time = meta_data.get("batch_data_time", -1) |
|
time_escape = time2 - time1 |
|
speed_stats["load_data"] = meta_data.get("load_data", 0.0) |
|
speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0) |
|
speed_stats["forward"] = f"{time_escape:0.3f}" |
|
speed_stats["batch_size"] = f"{len(results)}" |
|
speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}" |
|
description = f"{speed_stats}, " |
|
if pbar: |
|
pbar.update(end_idx - beg_idx) |
|
pbar.set_description(description) |
|
time_speech_total += batch_data_time |
|
time_escape_total += time_escape |
|
|
|
if pbar: |
|
|
|
pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}") |
|
torch.cuda.empty_cache() |
|
return asr_result_list |
|
|
|
def vad(self, input, input_len=None, **cfg): |
|
kwargs = self.kwargs |
|
|
|
deep_update(self.vad_kwargs, cfg) |
|
beg_vad = time.time() |
|
res = self.inference( |
|
input, |
|
input_len=input_len, |
|
model=self.vad_model, |
|
kwargs=self.vad_kwargs, |
|
**cfg, |
|
) |
|
end_vad = time.time() |
|
|
|
if cfg.get("merge_vad", False): |
|
for i in range(len(res)): |
|
res[i]["value"] = merge_vad( |
|
res[i]["value"], kwargs.get("merge_length_s", 15) * 1000 |
|
) |
|
elapsed = end_vad - beg_vad |
|
return elapsed, res |
|
|
|
def inference_with_vadres(self, input, vad_res, input_len=None, **cfg): |
|
|
|
kwargs = self.kwargs |
|
|
|
|
|
model = self.model |
|
deep_update(kwargs, cfg) |
|
batch_size = max(int(kwargs.get("batch_size_s", 300)) * 1000, 1) |
|
batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60)) * 1000 |
|
kwargs["batch_size"] = batch_size |
|
|
|
key_list, data_list = prepare_data_iterator( |
|
input, input_len=input_len, data_type=kwargs.get("data_type", None) |
|
) |
|
results_ret_list = [] |
|
time_speech_total_all_samples = 1e-6 |
|
|
|
beg_total = time.time() |
|
pbar_total = ( |
|
tqdm(colour="red", total=len(vad_res), dynamic_ncols=True) |
|
if not kwargs.get("disable_pbar", False) |
|
else None |
|
) |
|
|
|
for i in range(len(vad_res)): |
|
key = vad_res[i]["key"] |
|
vadsegments = vad_res[i]["value"] |
|
input_i = data_list[i] |
|
fs = kwargs["frontend"].fs if hasattr(kwargs["frontend"], "fs") else 16000 |
|
speech = load_audio_text_image_video( |
|
input_i, fs=fs, audio_fs=kwargs.get("fs", 16000) |
|
) |
|
speech_lengths = len(speech) |
|
n = len(vadsegments) |
|
data_with_index = [(vadsegments[i], i) for i in range(n)] |
|
sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0]) |
|
results_sorted = [] |
|
|
|
if not len(sorted_data): |
|
results_ret_list.append({"key": key, "text": "", "timestamp": []}) |
|
logging.info("decoding, utt: {}, empty speech".format(key)) |
|
continue |
|
|
|
if len(sorted_data) > 0 and len(sorted_data[0]) > 0: |
|
batch_size = max( |
|
batch_size, sorted_data[0][0][1] - sorted_data[0][0][0] |
|
) |
|
|
|
if kwargs["device"] == "cpu": |
|
batch_size = 0 |
|
|
|
beg_idx = 0 |
|
beg_asr_total = time.time() |
|
time_speech_total_per_sample = speech_lengths / 16000 |
|
time_speech_total_all_samples += time_speech_total_per_sample |
|
|
|
|
|
|
|
all_segments = [] |
|
max_len_in_batch = 0 |
|
end_idx = 1 |
|
|
|
for j, _ in enumerate(range(0, n)): |
|
|
|
sample_length = sorted_data[j][0][1] - sorted_data[j][0][0] |
|
potential_batch_length = max(max_len_in_batch, sample_length) * ( |
|
j + 1 - beg_idx |
|
) |
|
|
|
if ( |
|
j < n - 1 |
|
and sample_length < batch_size_threshold_ms |
|
and potential_batch_length < batch_size |
|
): |
|
max_len_in_batch = max(max_len_in_batch, sample_length) |
|
end_idx += 1 |
|
continue |
|
|
|
speech_j, speech_lengths_j, intervals = slice_padding_audio_samples( |
|
speech, speech_lengths, sorted_data[beg_idx:end_idx] |
|
) |
|
results = self.inference( |
|
speech_j, input_len=None, model=model, kwargs=kwargs, **cfg |
|
) |
|
|
|
for _b in range(len(speech_j)): |
|
results[_b]["interval"] = intervals[_b] |
|
|
|
if self.spk_model is not None: |
|
|
|
for _b in range(len(speech_j)): |
|
vad_segments = [ |
|
[ |
|
sorted_data[beg_idx:end_idx][_b][0][0] / 1000.0, |
|
sorted_data[beg_idx:end_idx][_b][0][1] / 1000.0, |
|
np.array(speech_j[_b]), |
|
] |
|
] |
|
segments = sv_chunk(vad_segments) |
|
all_segments.extend(segments) |
|
speech_b = [i[2] for i in segments] |
|
spk_res = self.inference( |
|
speech_b, |
|
input_len=None, |
|
model=self.spk_model, |
|
kwargs=kwargs, |
|
**cfg, |
|
) |
|
results[_b]["spk_embedding"] = spk_res[0]["spk_embedding"] |
|
|
|
beg_idx = end_idx |
|
end_idx += 1 |
|
max_len_in_batch = sample_length |
|
if len(results) < 1: |
|
continue |
|
results_sorted.extend(results) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
restored_data = [0] * n |
|
for j in range(n): |
|
index = sorted_data[j][1] |
|
cur = results_sorted[j] |
|
pattern = r"<\|([^|]+)\|>" |
|
emotion_string = re.findall(pattern, cur["text"]) |
|
cur["text"] = re.sub(pattern, "", cur["text"]) |
|
cur["emo"] = "".join([f"<|{t}|>" for t in emotion_string]) |
|
if self.punc_model is not None and len(cur["text"].strip()) > 0: |
|
deep_update(self.punc_kwargs, cfg) |
|
punc_res = self.inference( |
|
cur["text"], |
|
model=self.punc_model, |
|
kwargs=self.punc_kwargs, |
|
**cfg, |
|
) |
|
cur["text"] = punc_res[0]["text"] |
|
|
|
restored_data[index] = cur |
|
|
|
end_asr_total = time.time() |
|
time_escape_total_per_sample = end_asr_total - beg_asr_total |
|
if pbar_total: |
|
pbar_total.update(1) |
|
pbar_total.set_description( |
|
f"rtf_avg: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " |
|
f"time_speech: {time_speech_total_per_sample: 0.3f}, " |
|
f"time_escape: {time_escape_total_per_sample:0.3f}" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return restored_data |
|
|
|
def export(self, input=None, **cfg): |
|
""" |
|
|
|
:param input: |
|
:param type: |
|
:param quantize: |
|
:param fallback_num: |
|
:param calib_num: |
|
:param opset_version: |
|
:param cfg: |
|
:return: |
|
""" |
|
|
|
device = cfg.get("device", "cpu") |
|
model = self.model.to(device=device) |
|
kwargs = self.kwargs |
|
deep_update(kwargs, cfg) |
|
kwargs["device"] = device |
|
del kwargs["model"] |
|
model.eval() |
|
|
|
type = kwargs.get("type", "onnx") |
|
|
|
key_list, data_list = prepare_data_iterator( |
|
input, input_len=None, data_type=kwargs.get("data_type", None), key=None |
|
) |
|
|
|
with torch.no_grad(): |
|
export_dir = export_utils.export(model=model, data_in=data_list, **kwargs) |
|
|
|
return export_dir |
|
|