|
import torch |
|
from torch.nn.utils.rnn import pad_sequence |
|
|
|
|
|
def slice_padding_fbank(speech, speech_lengths, vad_segments): |
|
speech_list = [] |
|
speech_lengths_list = [] |
|
for i, segment in enumerate(vad_segments): |
|
|
|
bed_idx = int(segment[0][0] * 16) |
|
end_idx = min(int(segment[0][1] * 16), speech_lengths[0]) |
|
speech_i = speech[0, bed_idx:end_idx] |
|
speech_lengths_i = end_idx - bed_idx |
|
speech_list.append(speech_i) |
|
speech_lengths_list.append(speech_lengths_i) |
|
feats_pad = pad_sequence(speech_list, batch_first=True, padding_value=0.0) |
|
speech_lengths_pad = torch.Tensor(speech_lengths_list).int() |
|
return feats_pad, speech_lengths_pad |
|
|
|
|
|
def slice_padding_audio_samples(speech, speech_lengths, vad_segments): |
|
speech_list = [] |
|
speech_lengths_list = [] |
|
intervals = [] |
|
for i, segment in enumerate(vad_segments): |
|
bed_idx = int(segment[0][0] * 16) |
|
end_idx = min(int(segment[0][1] * 16), speech_lengths) |
|
speech_i = speech[bed_idx:end_idx] |
|
speech_lengths_i = end_idx - bed_idx |
|
speech_list.append(speech_i) |
|
speech_lengths_list.append(speech_lengths_i) |
|
intervals.append([bed_idx // 16, end_idx // 16]) |
|
|
|
return speech_list, speech_lengths_list, intervals |
|
|
|
|
|
def merge_vad(vad_result, max_length=15000, min_length=0): |
|
new_result = [] |
|
if len(vad_result) <= 1: |
|
return vad_result |
|
time_step = [t[0] for t in vad_result] + [t[1] for t in vad_result] |
|
time_step = sorted(list(set(time_step))) |
|
if len(time_step) == 0: |
|
return [] |
|
bg = 0 |
|
for i in range(len(time_step) - 1): |
|
time = time_step[i] |
|
if time_step[i + 1] - bg < max_length: |
|
continue |
|
if time - bg > min_length: |
|
new_result.append([bg, time]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bg = time |
|
new_result.append([bg, time_step[-1]]) |
|
return new_result |
|
|