|
import random |
|
from multiprocessing import Pool |
|
from pathlib import Path |
|
|
|
import click |
|
import librosa |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from tqdm import tqdm |
|
|
|
from tools.file import AUDIO_EXTENSIONS, list_files |
|
|
|
threshold = 10 ** (-50 / 20.0) |
|
|
|
|
|
def process(file): |
|
waveform, sample_rate = torchaudio.load(str(file), backend="sox") |
|
if waveform.size(0) > 1: |
|
waveform = waveform.mean(dim=0, keepdim=True) |
|
|
|
loudness = librosa.feature.rms( |
|
y=waveform.numpy().squeeze(), frame_length=2048, hop_length=512, center=True |
|
)[0] |
|
|
|
for i in range(len(loudness) - 1, 0, -1): |
|
if loudness[i] > threshold: |
|
break |
|
|
|
end_silent_time = (len(loudness) - i) * 512 / sample_rate |
|
|
|
if end_silent_time <= 0.3: |
|
random_time = random.uniform(0.3, 0.7) - end_silent_time |
|
waveform = F.pad( |
|
waveform, (0, int(random_time * sample_rate)), mode="constant", value=0 |
|
) |
|
|
|
for i in range(len(loudness)): |
|
if loudness[i] > threshold: |
|
break |
|
|
|
start_silent_time = i * 512 / sample_rate |
|
|
|
if start_silent_time > 0.02: |
|
waveform = waveform[:, int((start_silent_time - 0.02) * sample_rate) :] |
|
|
|
torchaudio.save(uri=str(file), src=waveform, sample_rate=sample_rate) |
|
|
|
|
|
@click.command() |
|
@click.argument("source", type=Path) |
|
@click.option("--num-workers", type=int, default=12) |
|
def main(source, num_workers): |
|
files = list(list_files(source, AUDIO_EXTENSIONS, recursive=True)) |
|
|
|
with Pool(num_workers) as p: |
|
list(tqdm(p.imap_unordered(process, files), total=len(files))) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|