jozee commited on
Commit
2985516
·
verified ·
1 Parent(s): de4c980

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -0
app.py CHANGED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import torch
4
+ from transformers import SamModel, SamProcessor
5
+ import numpy as np
6
+ import matplotlib.pyplot as plt
7
+
8
+ #Load the SAM model and processor
9
+ model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77")
10
+ processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77")
11
+
12
+ #Global variable to store input points
13
+ input_points = []
14
+
15
+ #Helper functions
16
+ def show_mask(mask, ax, random_color=False):
17
+ if random_color:
18
+ color = np.concatenate([np.random.random(3),
19
+ np.array([0.6])],
20
+ axis=0)
21
+ else:
22
+ color = np.array([30/255, 144/255, 255/255, 0.6])
23
+ h, w = mask.shape[-2:]
24
+ mask_image = mask.reshape(h,w,1)*color.reshape(1,1,-1)
25
+ ax.imshow(mask_image)
26
+
27
+ #Function to get pixel coordinates
28
+ def get_pixel_coordinates(image, evt:gr.SelectData):
29
+ global input_points
30
+ x, y = evt.index[0], evt.index[1]
31
+ input_points = [[[x, y]]]
32
+ return perform_prediction(image)
33
+
34
+ #Function to perform SAM model prediction
35
+ def perform_prediction(image):
36
+ global input_points
37
+ #Preprocess the image
38
+ inputs = processor(images=image, input_points=input_points, return_tensors="pt")
39
+ #Perform prediction
40
+ with torch.no_grad():
41
+ outputs = model(**inputs)
42
+ iou = outputs.iou_scores
43
+ max_iou_index = torch.argmax(iou)
44
+
45
+ #Post-process the masks
46
+ predicted_masks = processor.image_processor.post_process_masks(
47
+ outputs.pred_masks,
48
+ inputs['original_sizes'],
49
+ inputs['reshaped_input_sizes']
50
+ )
51
+ predicted_mask = predicted_masks[0]
52
+
53
+ #Display the mask on the image
54
+ mask_image = show_mask_on_image(image, predicted_mask[:, max_iou_index], return_image=True)
55
+ return mask_image
56
+
57
+ #Function to overlay mask on the image
58
+ def show_mask_on_image(raw_image, mask, return_image=False):
59
+ if not isinstance(mask, torch.Tensor):
60
+ mask = torch.Tensor(mask)
61
+
62
+ if len(mask.shape) == 4:
63
+ mask = mask.squeeze()
64
+
65
+ fig, axes = plt.subplots(1,1,figsize=(15,15))
66
+
67
+ mask = mask.cpu().detach()
68
+ axes.imshow(np.array(raw_image))
69
+ show_mask(mask, axes)
70
+ axes.axis("off")
71
+ plt.show()
72
+
73
+ if return_image:
74
+ fig = plt.gcf()
75
+ fig.canvas.draw()
76
+ #Convert plot to image
77
+ img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
78
+ img = img.reshape(fig.canvas.get_width_height()[::-1]+(3,))
79
+ img = Image.fromarray(img)
80
+ plt.close(fig)
81
+ return img
82
+
83
+ #Create the Gradio interface
84
+ with gr.Blocks() as demo:
85
+ with gr.Row():
86
+ img = gr.Image(type="pil", label="Input Image", height=400, width=600)
87
+ output_image = gr.Image(label="Masked Image")
88
+ img.select(get_pixel_coordinates, inputs=[img], outputs=[output_image])
89
+
90
+ demo.launch(share=False)