Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,158 Bytes
610b26c 94cac87 579ccb6 94cac87 610b26c 064897a 2aa3be8 064897a c28fb33 064897a 07bf625 064897a 93f1fd2 4a807c3 064897a 4a807c3 93f1fd2 0a2db71 064897a 0a599f7 94cac87 064897a c215ac5 064897a 94cac87 0a2db71 064897a 93f1fd2 0a2db71 064897a 610b26c 064897a 94cac87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width>=target_width:
return False
if alignment in ("Top","Bottom") and source_height>=target_height:
return False
return True
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
#Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0]/image.width, target_size[1]/image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
#Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
#Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_option = 25
else:
resize_percentage = custom_resize_percentage
#calculate new dimensions based on percentage
resize_factor = resize_percentage/100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
#Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
#Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
#Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage/100))
overlap_y = int(new_height * (overlap_percentage/100))
#Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
#Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0]-new_width)//2
margin_y = (target_size[1]-new_height)//2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1]-new_height)//2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1]-new_height)//2
elif alignment == "Top":
margin_x = (target_size[0]-new_width)//2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0]-new_width)//2
margin_y = target_size[1] - new_height
#adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0]-new_width))
margin_y = max(0, min(margin_y, target_size[1]-new_height))
#Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255,255,255))
background.paste(source, (margin_x, margin_y))
#Create the mask
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
#Calculate overlap areas
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x+white_gaps_patch
right_overlap = margin_x + new_width-overlap_x if overlap_right else margin_x+new_width-white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y+new_height-white_gaps_patch
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
#Draw the mask
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
#Create a preview image showing the mask
preview = background.copy().convert('RGBA')
#Create a semi-transparent red overlay
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) #Reduced alpha to 64(25% opacity)
#Convert black pixels in the mask to semi-transparent red
red_mask = Image.new('RGBA', background.size, (0,0,0,0))
red_mask.paste(red_overlay, (0,0), mask)
#Overlay the red mask on the background
preview = Image.alpha_composite(preview, red_mask)
return preview
@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
if not can_expand(background.width, background.height, width, height, alignment):
alignment = "Middle"
cnet_image = background.copy()
cnet_image.paste(0, (0,0), mask)
final_prompt = f"{prompt_input}, high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
print("hello world in infer function!!!!!!!!!!!!!!!!")
for image in pipe(
prompt_embeds = prompt_embeds,
negative_prompt_embeds = negative_prompt_embeds,
pooled_prompt_embeds = pooled_prompt_embeds,
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds,
image = cnet_image,
num_inference_steps=num_inference_steps
):
# yield cnet_image, image
pass
image = image.convert('RGBA')
cnet_image.paste(image, (0,0), mask)
# yield background, cnet_image
print("#####################",type(cnet_image),"##############################")
return cnet_image
def clear_result():
"""Clears the result ImageSlider."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update()
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update()
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
return gr.update(visible=(resize_option=="Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if history is None:
history = []
history.insert(0, new_image)
return history
with gr.Blocks() as demo:
with gr.Column():
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Input Image"
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)")
with gr.Column(scale=1):
run_button = gr.Button('Generate')
with gr.Row():
target_ratio = gr.Radio(
label="Expected Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=['Middle','Left','Right','Top','Bottom'],
value='Middle',
label='Alignment'
)
#高级配置,当选择custom的时候会自动打开
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Column():
#自定义的宽高
with gr.Row():
width_slider = gr.Slider(
label="Target Width",
minimum=720,
maximum=1536,
step=8,
value=720, #Set a default value
)
height_slider = gr.Slider(
label="Target Height",
minimum=720,
maximum=1536,
step=8,
value=1280, #Set a default value
)
#生成步数
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
#组件组
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=10,
step=1
)
with gr.Row():
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
with gr.Row():
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
with gr.Row():
resize_option = gr.Radio(
label = "Resize input image",
choices = ["Full", "50%", "33%", "25%", "Custom"],
value="Full"
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum = 1,
maximum = 100,
step = 1,
value = 50,
visible = False
)
with gr.Column():
preview_button = gr.Button("Preview alignment and mask")
with gr.Column():
result = gr.Image(label="Generate Image", interactive=False)
# result = ImageSlider(label="Generated Image")
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
preview_image = gr.Image(label="Preview")
target_ratio.change(
fn=preload_presets, #选择ratio aspect 的单选框时,调用这个函数
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
run_button.click(#Clear the result
fn=clear_result,
inputs=None,
outputs=result,
).then( #Generate the new image
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=[result],
).then(#Update the history gallery
fn=lambda x,history: update_history(x, history),
inputs=[result, history_gallery],
outputs=history_gallery,
)
preview_button.click(
fn=preview_image_and_mask,
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=preview_image,
queue=False
)
demo.queue(max_size=12).launch(share=False) |