File size: 15,158 Bytes
610b26c
94cac87
 
 
 
579ccb6
94cac87
 
 
 
 
 
610b26c
 
064897a
 
 
 
 
2aa3be8
064897a
 
 
 
 
 
 
 
 
 
 
 
c28fb33
064897a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07bf625
064897a
 
 
 
 
 
 
 
93f1fd2
 
4a807c3
064897a
 
 
4a807c3
93f1fd2
0a2db71
064897a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a599f7
94cac87
 
 
 
 
 
 
 
 
 
 
 
 
 
064897a
c215ac5
064897a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94cac87
0a2db71
 
064897a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f1fd2
0a2db71
 
 
 
064897a
610b26c
064897a
 
 
 
 
 
 
 
94cac87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw
import numpy as np

config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

def can_expand(source_width, source_height, target_width, target_height, alignment):
    """Checks if the image can be expanded based on the alignment."""
    if alignment in ("Left", "Right") and source_width>=target_width:
        return False
    if alignment in ("Top","Bottom") and source_height>=target_height:
        return False
    return True

def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    target_size = (width, height)

    #Calculate the scaling factor to fit the image within the target size
    scale_factor = min(target_size[0]/image.width, target_size[1]/image.height)
    new_width = int(image.width * scale_factor)
    new_height = int(image.height * scale_factor)

    #Resize the source image to fit within target size
    source = image.resize((new_width, new_height), Image.LANCZOS)

    #Apply resize option using percentages
    if resize_option == "Full":
        resize_percentage = 100
    elif resize_option == "50%":
        resize_percentage = 50
    elif resize_option == "33%":
        resize_percentage = 33
    elif resize_option == "25%":
        resize_option = 25
    else:
        resize_percentage = custom_resize_percentage

    #calculate new dimensions based on percentage
    resize_factor = resize_percentage/100
    new_width = int(source.width * resize_factor)
    new_height = int(source.height * resize_factor)

    #Ensure minimum size of 64 pixels
    new_width = max(new_width, 64)
    new_height = max(new_height, 64)

    #Resize the image
    source = source.resize((new_width, new_height), Image.LANCZOS)

    #Calculate the overlap in pixels based on the percentage
    overlap_x = int(new_width * (overlap_percentage/100))
    overlap_y = int(new_height * (overlap_percentage/100))

    #Ensure minimum overlap of 1 pixel
    overlap_x = max(overlap_x, 1)
    overlap_y = max(overlap_y, 1)

    #Calculate margins based on alignment
    if alignment == "Middle":
        margin_x = (target_size[0]-new_width)//2
        margin_y = (target_size[1]-new_height)//2
    elif alignment == "Left":
        margin_x = 0
        margin_y = (target_size[1]-new_height)//2
    elif alignment == "Right":
        margin_x = target_size[0] - new_width
        margin_y = (target_size[1]-new_height)//2
    elif alignment == "Top":
        margin_x = (target_size[0]-new_width)//2
        margin_y = 0
    elif alignment == "Bottom":
        margin_x = (target_size[0]-new_width)//2
        margin_y = target_size[1] - new_height

    #adjust margins to eliminate gaps
    margin_x = max(0, min(margin_x, target_size[0]-new_width))
    margin_y = max(0, min(margin_y, target_size[1]-new_height))

    #Create a new background image and paste the resized source image
    background = Image.new('RGB', target_size, (255,255,255))
    background.paste(source, (margin_x, margin_y))

    #Create the mask
    mask = Image.new('L', target_size, 255)
    mask_draw = ImageDraw.Draw(mask)

    #Calculate overlap areas
    white_gaps_patch = 2

    left_overlap = margin_x + overlap_x if overlap_left else margin_x+white_gaps_patch
    right_overlap = margin_x + new_width-overlap_x if overlap_right else margin_x+new_width-white_gaps_patch
    top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
    bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y+new_height-white_gaps_patch

    if alignment == "Left":
        left_overlap = margin_x + overlap_x if overlap_left else margin_x
    elif alignment == "Right":
        right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
    elif alignment == "Top":
        top_overlap = margin_y + overlap_y if overlap_top else margin_y
    elif alignment == "Bottom":
        bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height

    #Draw the mask
    mask_draw.rectangle([
        (left_overlap, top_overlap),
        (right_overlap, bottom_overlap)
    ], fill=0)

    return background, mask

def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)

    #Create a preview image showing the mask
    preview = background.copy().convert('RGBA')

    #Create a semi-transparent red overlay
    red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) #Reduced alpha to 64(25% opacity)

    #Convert black pixels in the mask to semi-transparent red
    red_mask = Image.new('RGBA', background.size, (0,0,0,0))
    red_mask.paste(red_overlay, (0,0), mask)

    #Overlay the red mask on the background
    preview = Image.alpha_composite(preview, red_mask)

    return preview

@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)

    if not can_expand(background.width, background.height, width, height, alignment):
        alignment = "Middle"

    cnet_image = background.copy()
    cnet_image.paste(0, (0,0), mask)

    final_prompt = f"{prompt_input}, high quality, 4k"

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipe.encode_prompt(final_prompt, "cuda", True)
    print("hello world in infer function!!!!!!!!!!!!!!!!")
    for image in pipe(
        prompt_embeds = prompt_embeds,
        negative_prompt_embeds = negative_prompt_embeds,
        pooled_prompt_embeds = pooled_prompt_embeds,
        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds,
        image = cnet_image,
        num_inference_steps=num_inference_steps
    ):
         # yield cnet_image, image
        pass
        
    image = image.convert('RGBA')
    cnet_image.paste(image, (0,0), mask)

    # yield background, cnet_image
    print("#####################",type(cnet_image),"##############################")
    return cnet_image

def clear_result():
    """Clears the result ImageSlider."""
    return gr.update(value=None)

def preload_presets(target_ratio, ui_width, ui_height):
    """Updates the width and height sliders based on the selected aspect ratio."""
    if target_ratio == "9:16":
        changed_width = 720
        changed_height = 1280
        return changed_width, changed_height, gr.update()
    elif target_ratio == "16:9":
        changed_width = 1280
        changed_height = 720
        return changed_width, changed_height, gr.update()
    elif target_ratio == "1:1":
        changed_width = 1024
        changed_height = 1024
        return ui_width, ui_height, gr.update(open=True)

def select_the_right_preset(user_width, user_height):
    if user_width == 720 and user_height == 1280:
        return "9:16"
    elif user_width == 1280 and user_height == 720:
        return "16:9"
    elif user_width == 1024 and user_height == 1024:
        return "1:1"
    else:
        return "Custom"

def toggle_custom_resize_slider(resize_option):
    return gr.update(visible=(resize_option=="Custom"))

def update_history(new_image, history):
    """Updates the history gallery with the new image."""
    if history is None:
        history = []
    history.insert(0, new_image)
    return history


with gr.Blocks() as demo:
    with gr.Column():
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    type="pil",
                    label="Input Image"
                )

                with gr.Row():
                    with gr.Column(scale=2):
                        prompt_input = gr.Textbox(label="Prompt (Optional)")
                    with gr.Column(scale=1):
                        run_button = gr.Button('Generate')

                with gr.Row():
                    target_ratio = gr.Radio(
                        label="Expected Ratio",
                        choices=["9:16", "16:9", "1:1", "Custom"],
                        value="9:16",
                        scale=2
                    )

                    alignment_dropdown = gr.Dropdown(
                        choices=['Middle','Left','Right','Top','Bottom'],
                        value='Middle',
                        label='Alignment'
                    )
                #高级配置,当选择custom的时候会自动打开
                with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
                    with gr.Column():
                        #自定义的宽高
                        with gr.Row():
                            width_slider = gr.Slider(
                                label="Target Width",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=720, #Set a default value
                            )
                            height_slider = gr.Slider(
                                label="Target Height",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=1280, #Set a default value
                            )
                        #生成步数
                        num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
                        #组件组
                        with gr.Group():
                            overlap_percentage = gr.Slider(
                                label="Mask overlap (%)",
                                minimum=1,
                                maximum=50,
                                value=10,
                                step=1
                            )
                            with gr.Row():
                                overlap_top = gr.Checkbox(label="Overlap Top", value=True)
                                overlap_right = gr.Checkbox(label="Overlap Right", value=True)
                            with gr.Row():
                                overlap_left = gr.Checkbox(label="Overlap Left", value=True)
                                overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
                        with gr.Row():
                            resize_option = gr.Radio(
                                label = "Resize input image",
                                choices = ["Full", "50%", "33%", "25%", "Custom"],
                                value="Full"
                            )
                            custom_resize_percentage = gr.Slider(
                                label="Custom resize (%)",
                                minimum = 1,
                                maximum = 100,
                                step = 1,
                                value = 50,
                                visible = False
                            )

                        with gr.Column():
                            preview_button = gr.Button("Preview alignment and mask")

            with gr.Column():
                result = gr.Image(label="Generate Image", interactive=False)
                # result = ImageSlider(label="Generated Image")
                history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
                preview_image = gr.Image(label="Preview")

    target_ratio.change(
        fn=preload_presets, #选择ratio aspect 的单选框时,调用这个函数
        inputs=[target_ratio, width_slider, height_slider],
        outputs=[width_slider, height_slider, settings_panel],
        queue=False
    )

    width_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )

    height_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )

    resize_option.change(
        fn=toggle_custom_resize_slider,
        inputs=[resize_option],
        outputs=[custom_resize_percentage],
        queue=False
    )

    run_button.click(#Clear the result
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then( #Generate the new image
        fn=infer,
        inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
               resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
               overlap_left, overlap_right, overlap_top, overlap_bottom],
        outputs=[result],
    ).then(#Update the history gallery
        fn=lambda x,history: update_history(x, history),
        inputs=[result, history_gallery],
        outputs=history_gallery,
    )

    preview_button.click(
        fn=preview_image_and_mask,
        inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
               overlap_left, overlap_right, overlap_top, overlap_bottom],
        outputs=preview_image,
        queue=False
    )
    
demo.queue(max_size=12).launch(share=False)