Spaces:
Running
on
Zero
Running
on
Zero
Create pipeline_fill_sd_xl.py
Browse files- pipeline_fill_sd_xl.py +559 -0
pipeline_fill_sd_xl.py
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import List, Optional, Union
|
16 |
+
|
17 |
+
import cv2
|
18 |
+
import PIL.Image
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
22 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
23 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
24 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
25 |
+
from diffusers.utils.torch_utils import randn_tensor
|
26 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
27 |
+
|
28 |
+
from controlnet_union import ControlNetModel_Union
|
29 |
+
|
30 |
+
|
31 |
+
def latents_to_rgb(latents):
|
32 |
+
weights = ((60, -60, 25, -70), (60, -5, 15, -50), (60, 10, -5, -35))
|
33 |
+
|
34 |
+
weights_tensor = torch.t(
|
35 |
+
torch.tensor(weights, dtype=latents.dtype).to(latents.device)
|
36 |
+
)
|
37 |
+
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(
|
38 |
+
latents.device
|
39 |
+
)
|
40 |
+
rgb_tensor = torch.einsum(
|
41 |
+
"...lxy,lr -> ...rxy", latents, weights_tensor
|
42 |
+
) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
|
43 |
+
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
|
44 |
+
image_array = image_array.transpose(1, 2, 0) # Change the order of dimensions
|
45 |
+
|
46 |
+
denoised_image = cv2.fastNlMeansDenoisingColored(image_array, None, 10, 10, 7, 21)
|
47 |
+
blurred_image = cv2.GaussianBlur(denoised_image, (5, 5), 0)
|
48 |
+
final_image = PIL.Image.fromarray(blurred_image)
|
49 |
+
|
50 |
+
width, height = final_image.size
|
51 |
+
final_image = final_image.resize(
|
52 |
+
(width * 8, height * 8), PIL.Image.Resampling.LANCZOS
|
53 |
+
)
|
54 |
+
|
55 |
+
return final_image
|
56 |
+
|
57 |
+
|
58 |
+
def retrieve_timesteps(
|
59 |
+
scheduler,
|
60 |
+
num_inference_steps: Optional[int] = None,
|
61 |
+
device: Optional[Union[str, torch.device]] = None,
|
62 |
+
**kwargs,
|
63 |
+
):
|
64 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
65 |
+
timesteps = scheduler.timesteps
|
66 |
+
|
67 |
+
return timesteps, num_inference_steps
|
68 |
+
|
69 |
+
|
70 |
+
class StableDiffusionXLFillPipeline(DiffusionPipeline, StableDiffusionMixin):
|
71 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
72 |
+
_optional_components = [
|
73 |
+
"tokenizer",
|
74 |
+
"tokenizer_2",
|
75 |
+
"text_encoder",
|
76 |
+
"text_encoder_2",
|
77 |
+
]
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
vae: AutoencoderKL,
|
82 |
+
text_encoder: CLIPTextModel,
|
83 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
84 |
+
tokenizer: CLIPTokenizer,
|
85 |
+
tokenizer_2: CLIPTokenizer,
|
86 |
+
unet: UNet2DConditionModel,
|
87 |
+
controlnet: ControlNetModel_Union,
|
88 |
+
scheduler: KarrasDiffusionSchedulers,
|
89 |
+
force_zeros_for_empty_prompt: bool = True,
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
self.register_modules(
|
94 |
+
vae=vae,
|
95 |
+
text_encoder=text_encoder,
|
96 |
+
text_encoder_2=text_encoder_2,
|
97 |
+
tokenizer=tokenizer,
|
98 |
+
tokenizer_2=tokenizer_2,
|
99 |
+
unet=unet,
|
100 |
+
controlnet=controlnet,
|
101 |
+
scheduler=scheduler,
|
102 |
+
)
|
103 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
104 |
+
self.image_processor = VaeImageProcessor(
|
105 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
106 |
+
)
|
107 |
+
self.control_image_processor = VaeImageProcessor(
|
108 |
+
vae_scale_factor=self.vae_scale_factor,
|
109 |
+
do_convert_rgb=True,
|
110 |
+
do_normalize=False,
|
111 |
+
)
|
112 |
+
|
113 |
+
self.register_to_config(
|
114 |
+
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
|
115 |
+
)
|
116 |
+
|
117 |
+
def encode_prompt(
|
118 |
+
self,
|
119 |
+
prompt: str,
|
120 |
+
device: Optional[torch.device] = None,
|
121 |
+
do_classifier_free_guidance: bool = True,
|
122 |
+
):
|
123 |
+
device = device or self._execution_device
|
124 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
125 |
+
|
126 |
+
if prompt is not None:
|
127 |
+
batch_size = len(prompt)
|
128 |
+
|
129 |
+
# Define tokenizers and text encoders
|
130 |
+
tokenizers = (
|
131 |
+
[self.tokenizer, self.tokenizer_2]
|
132 |
+
if self.tokenizer is not None
|
133 |
+
else [self.tokenizer_2]
|
134 |
+
)
|
135 |
+
text_encoders = (
|
136 |
+
[self.text_encoder, self.text_encoder_2]
|
137 |
+
if self.text_encoder is not None
|
138 |
+
else [self.text_encoder_2]
|
139 |
+
)
|
140 |
+
|
141 |
+
prompt_2 = prompt
|
142 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
143 |
+
|
144 |
+
# textual inversion: process multi-vector tokens if necessary
|
145 |
+
prompt_embeds_list = []
|
146 |
+
prompts = [prompt, prompt_2]
|
147 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
148 |
+
text_inputs = tokenizer(
|
149 |
+
prompt,
|
150 |
+
padding="max_length",
|
151 |
+
max_length=tokenizer.model_max_length,
|
152 |
+
truncation=True,
|
153 |
+
return_tensors="pt",
|
154 |
+
)
|
155 |
+
|
156 |
+
text_input_ids = text_inputs.input_ids
|
157 |
+
|
158 |
+
prompt_embeds = text_encoder(
|
159 |
+
text_input_ids.to(device), output_hidden_states=True
|
160 |
+
)
|
161 |
+
|
162 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
163 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
164 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
165 |
+
prompt_embeds_list.append(prompt_embeds)
|
166 |
+
|
167 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
168 |
+
|
169 |
+
# get unconditional embeddings for classifier free guidance
|
170 |
+
zero_out_negative_prompt = True
|
171 |
+
negative_prompt_embeds = None
|
172 |
+
negative_pooled_prompt_embeds = None
|
173 |
+
|
174 |
+
if do_classifier_free_guidance and zero_out_negative_prompt:
|
175 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
176 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
177 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
178 |
+
negative_prompt = ""
|
179 |
+
negative_prompt_2 = negative_prompt
|
180 |
+
|
181 |
+
# normalize str to list
|
182 |
+
negative_prompt = (
|
183 |
+
batch_size * [negative_prompt]
|
184 |
+
if isinstance(negative_prompt, str)
|
185 |
+
else negative_prompt
|
186 |
+
)
|
187 |
+
negative_prompt_2 = (
|
188 |
+
batch_size * [negative_prompt_2]
|
189 |
+
if isinstance(negative_prompt_2, str)
|
190 |
+
else negative_prompt_2
|
191 |
+
)
|
192 |
+
|
193 |
+
uncond_tokens: List[str]
|
194 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
195 |
+
raise TypeError(
|
196 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
197 |
+
f" {type(prompt)}."
|
198 |
+
)
|
199 |
+
elif batch_size != len(negative_prompt):
|
200 |
+
raise ValueError(
|
201 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
202 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
203 |
+
" the batch size of `prompt`."
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
207 |
+
|
208 |
+
negative_prompt_embeds_list = []
|
209 |
+
for negative_prompt, tokenizer, text_encoder in zip(
|
210 |
+
uncond_tokens, tokenizers, text_encoders
|
211 |
+
):
|
212 |
+
max_length = prompt_embeds.shape[1]
|
213 |
+
uncond_input = tokenizer(
|
214 |
+
negative_prompt,
|
215 |
+
padding="max_length",
|
216 |
+
max_length=max_length,
|
217 |
+
truncation=True,
|
218 |
+
return_tensors="pt",
|
219 |
+
)
|
220 |
+
|
221 |
+
negative_prompt_embeds = text_encoder(
|
222 |
+
uncond_input.input_ids.to(device),
|
223 |
+
output_hidden_states=True,
|
224 |
+
)
|
225 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
226 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
227 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
228 |
+
|
229 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
230 |
+
|
231 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
232 |
+
|
233 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
234 |
+
|
235 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
236 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
237 |
+
prompt_embeds = prompt_embeds.repeat(1, 1, 1)
|
238 |
+
prompt_embeds = prompt_embeds.view(bs_embed * 1, seq_len, -1)
|
239 |
+
|
240 |
+
if do_classifier_free_guidance:
|
241 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
242 |
+
seq_len = negative_prompt_embeds.shape[1]
|
243 |
+
|
244 |
+
if self.text_encoder_2 is not None:
|
245 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
246 |
+
dtype=self.text_encoder_2.dtype, device=device
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
250 |
+
dtype=self.unet.dtype, device=device
|
251 |
+
)
|
252 |
+
|
253 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, 1, 1)
|
254 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
255 |
+
batch_size * 1, seq_len, -1
|
256 |
+
)
|
257 |
+
|
258 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)
|
259 |
+
if do_classifier_free_guidance:
|
260 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
|
261 |
+
1, 1
|
262 |
+
).view(bs_embed * 1, -1)
|
263 |
+
|
264 |
+
return (
|
265 |
+
prompt_embeds,
|
266 |
+
negative_prompt_embeds,
|
267 |
+
pooled_prompt_embeds,
|
268 |
+
negative_pooled_prompt_embeds,
|
269 |
+
)
|
270 |
+
|
271 |
+
def check_inputs(
|
272 |
+
self,
|
273 |
+
prompt_embeds,
|
274 |
+
negative_prompt_embeds,
|
275 |
+
pooled_prompt_embeds,
|
276 |
+
negative_pooled_prompt_embeds,
|
277 |
+
image,
|
278 |
+
controlnet_conditioning_scale=1.0,
|
279 |
+
):
|
280 |
+
if prompt_embeds is None:
|
281 |
+
raise ValueError(
|
282 |
+
"Provide `prompt_embeds`. Cannot leave `prompt_embeds` undefined."
|
283 |
+
)
|
284 |
+
|
285 |
+
if negative_prompt_embeds is None:
|
286 |
+
raise ValueError(
|
287 |
+
"Provide `negative_prompt_embeds`. Cannot leave `negative_prompt_embeds` undefined."
|
288 |
+
)
|
289 |
+
|
290 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
291 |
+
raise ValueError(
|
292 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
293 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
294 |
+
f" {negative_prompt_embeds.shape}."
|
295 |
+
)
|
296 |
+
|
297 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
298 |
+
raise ValueError(
|
299 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
300 |
+
)
|
301 |
+
|
302 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
303 |
+
raise ValueError(
|
304 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
305 |
+
)
|
306 |
+
|
307 |
+
# Check `image`
|
308 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
309 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
310 |
+
)
|
311 |
+
if (
|
312 |
+
isinstance(self.controlnet, ControlNetModel_Union)
|
313 |
+
or is_compiled
|
314 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
|
315 |
+
):
|
316 |
+
if not isinstance(image, PIL.Image.Image):
|
317 |
+
raise TypeError(
|
318 |
+
f"image must be passed and has to be a PIL image, but is {type(image)}"
|
319 |
+
)
|
320 |
+
|
321 |
+
else:
|
322 |
+
assert False
|
323 |
+
|
324 |
+
# Check `controlnet_conditioning_scale`
|
325 |
+
if (
|
326 |
+
isinstance(self.controlnet, ControlNetModel_Union)
|
327 |
+
or is_compiled
|
328 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
|
329 |
+
):
|
330 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
331 |
+
raise TypeError(
|
332 |
+
"For single controlnet: `controlnet_conditioning_scale` must be type `float`."
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
assert False
|
336 |
+
|
337 |
+
def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False):
|
338 |
+
image = self.control_image_processor.preprocess(image).to(dtype=torch.float32)
|
339 |
+
|
340 |
+
image_batch_size = image.shape[0]
|
341 |
+
|
342 |
+
image = image.repeat_interleave(image_batch_size, dim=0)
|
343 |
+
image = image.to(device=device, dtype=dtype)
|
344 |
+
|
345 |
+
if do_classifier_free_guidance:
|
346 |
+
image = torch.cat([image] * 2)
|
347 |
+
|
348 |
+
return image
|
349 |
+
|
350 |
+
def prepare_latents(
|
351 |
+
self, batch_size, num_channels_latents, height, width, dtype, device
|
352 |
+
):
|
353 |
+
shape = (
|
354 |
+
batch_size,
|
355 |
+
num_channels_latents,
|
356 |
+
int(height) // self.vae_scale_factor,
|
357 |
+
int(width) // self.vae_scale_factor,
|
358 |
+
)
|
359 |
+
|
360 |
+
latents = randn_tensor(shape, device=device, dtype=dtype)
|
361 |
+
|
362 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
363 |
+
latents = latents * self.scheduler.init_noise_sigma
|
364 |
+
return latents
|
365 |
+
|
366 |
+
@property
|
367 |
+
def guidance_scale(self):
|
368 |
+
return self._guidance_scale
|
369 |
+
|
370 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
371 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
372 |
+
# corresponds to doing no classifier free guidance.
|
373 |
+
@property
|
374 |
+
def do_classifier_free_guidance(self):
|
375 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
376 |
+
|
377 |
+
@property
|
378 |
+
def num_timesteps(self):
|
379 |
+
return self._num_timesteps
|
380 |
+
|
381 |
+
@torch.no_grad()
|
382 |
+
def __call__(
|
383 |
+
self,
|
384 |
+
prompt_embeds: torch.Tensor,
|
385 |
+
negative_prompt_embeds: torch.Tensor,
|
386 |
+
pooled_prompt_embeds: torch.Tensor,
|
387 |
+
negative_pooled_prompt_embeds: torch.Tensor,
|
388 |
+
image: PipelineImageInput = None,
|
389 |
+
num_inference_steps: int = 8,
|
390 |
+
guidance_scale: float = 1.5,
|
391 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
392 |
+
):
|
393 |
+
# 1. Check inputs. Raise error if not correct
|
394 |
+
self.check_inputs(
|
395 |
+
prompt_embeds,
|
396 |
+
negative_prompt_embeds,
|
397 |
+
pooled_prompt_embeds,
|
398 |
+
negative_pooled_prompt_embeds,
|
399 |
+
image,
|
400 |
+
controlnet_conditioning_scale,
|
401 |
+
)
|
402 |
+
|
403 |
+
self._guidance_scale = guidance_scale
|
404 |
+
|
405 |
+
# 2. Define call parameters
|
406 |
+
batch_size = 1
|
407 |
+
device = self._execution_device
|
408 |
+
|
409 |
+
# 4. Prepare image
|
410 |
+
if isinstance(self.controlnet, ControlNetModel_Union):
|
411 |
+
image = self.prepare_image(
|
412 |
+
image=image,
|
413 |
+
device=device,
|
414 |
+
dtype=self.controlnet.dtype,
|
415 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
416 |
+
)
|
417 |
+
height, width = image.shape[-2:]
|
418 |
+
else:
|
419 |
+
assert False
|
420 |
+
|
421 |
+
# 5. Prepare timesteps
|
422 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
423 |
+
self.scheduler, num_inference_steps, device
|
424 |
+
)
|
425 |
+
self._num_timesteps = len(timesteps)
|
426 |
+
|
427 |
+
# 6. Prepare latent variables
|
428 |
+
num_channels_latents = self.unet.config.in_channels
|
429 |
+
latents = self.prepare_latents(
|
430 |
+
batch_size,
|
431 |
+
num_channels_latents,
|
432 |
+
height,
|
433 |
+
width,
|
434 |
+
prompt_embeds.dtype,
|
435 |
+
device,
|
436 |
+
)
|
437 |
+
|
438 |
+
# 7 Prepare added time ids & embeddings
|
439 |
+
add_text_embeds = pooled_prompt_embeds
|
440 |
+
|
441 |
+
add_time_ids = negative_add_time_ids = torch.tensor(
|
442 |
+
image.shape[-2:] + torch.Size([0, 0]) + image.shape[-2:]
|
443 |
+
).unsqueeze(0)
|
444 |
+
|
445 |
+
if self.do_classifier_free_guidance:
|
446 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
447 |
+
add_text_embeds = torch.cat(
|
448 |
+
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
449 |
+
)
|
450 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
451 |
+
|
452 |
+
prompt_embeds = prompt_embeds.to(device)
|
453 |
+
add_text_embeds = add_text_embeds.to(device)
|
454 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size, 1)
|
455 |
+
|
456 |
+
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
|
457 |
+
union_control_type = (
|
458 |
+
torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0])
|
459 |
+
.to(device, dtype=prompt_embeds.dtype)
|
460 |
+
.repeat(batch_size * 2, 1)
|
461 |
+
)
|
462 |
+
|
463 |
+
added_cond_kwargs = {
|
464 |
+
"text_embeds": add_text_embeds,
|
465 |
+
"time_ids": add_time_ids,
|
466 |
+
"control_type": union_control_type,
|
467 |
+
}
|
468 |
+
|
469 |
+
controlnet_prompt_embeds = prompt_embeds
|
470 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
471 |
+
|
472 |
+
# 8. Denoising loop
|
473 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
474 |
+
|
475 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
476 |
+
for i, t in enumerate(timesteps):
|
477 |
+
# expand the latents if we are doing classifier free guidance
|
478 |
+
latent_model_input = (
|
479 |
+
torch.cat([latents] * 2)
|
480 |
+
if self.do_classifier_free_guidance
|
481 |
+
else latents
|
482 |
+
)
|
483 |
+
latent_model_input = self.scheduler.scale_model_input(
|
484 |
+
latent_model_input, t
|
485 |
+
)
|
486 |
+
|
487 |
+
# controlnet(s) inference
|
488 |
+
control_model_input = latent_model_input
|
489 |
+
|
490 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
491 |
+
control_model_input,
|
492 |
+
t,
|
493 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
494 |
+
controlnet_cond_list=controlnet_image_list,
|
495 |
+
conditioning_scale=controlnet_conditioning_scale,
|
496 |
+
guess_mode=False,
|
497 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
498 |
+
return_dict=False,
|
499 |
+
)
|
500 |
+
|
501 |
+
# predict the noise residual
|
502 |
+
noise_pred = self.unet(
|
503 |
+
latent_model_input,
|
504 |
+
t,
|
505 |
+
encoder_hidden_states=prompt_embeds,
|
506 |
+
timestep_cond=None,
|
507 |
+
cross_attention_kwargs={},
|
508 |
+
down_block_additional_residuals=down_block_res_samples,
|
509 |
+
mid_block_additional_residual=mid_block_res_sample,
|
510 |
+
added_cond_kwargs=added_cond_kwargs,
|
511 |
+
return_dict=False,
|
512 |
+
)[0]
|
513 |
+
|
514 |
+
# perform guidance
|
515 |
+
if self.do_classifier_free_guidance:
|
516 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
517 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
518 |
+
noise_pred_text - noise_pred_uncond
|
519 |
+
)
|
520 |
+
|
521 |
+
# compute the previous noisy sample x_t -> x_t-1
|
522 |
+
latents = self.scheduler.step(
|
523 |
+
noise_pred, t, latents, return_dict=False
|
524 |
+
)[0]
|
525 |
+
|
526 |
+
if i == 2:
|
527 |
+
prompt_embeds = prompt_embeds[-1:]
|
528 |
+
add_text_embeds = add_text_embeds[-1:]
|
529 |
+
add_time_ids = add_time_ids[-1:]
|
530 |
+
union_control_type = union_control_type[-1:]
|
531 |
+
|
532 |
+
added_cond_kwargs = {
|
533 |
+
"text_embeds": add_text_embeds,
|
534 |
+
"time_ids": add_time_ids,
|
535 |
+
"control_type": union_control_type,
|
536 |
+
}
|
537 |
+
|
538 |
+
controlnet_prompt_embeds = prompt_embeds
|
539 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
540 |
+
|
541 |
+
image = image[-1:]
|
542 |
+
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
|
543 |
+
|
544 |
+
self._guidance_scale = 0.0
|
545 |
+
|
546 |
+
if i == len(timesteps) - 1 or (
|
547 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
548 |
+
):
|
549 |
+
progress_bar.update()
|
550 |
+
yield latents_to_rgb(latents)
|
551 |
+
|
552 |
+
latents = latents / self.vae.config.scaling_factor
|
553 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
554 |
+
image = self.image_processor.postprocess(image)[0]
|
555 |
+
|
556 |
+
# Offload all models
|
557 |
+
self.maybe_free_model_hooks()
|
558 |
+
|
559 |
+
yield image
|