Spaces:
Runtime error
Runtime error
File size: 8,415 Bytes
12b7f59 7b6e4c3 12b7f59 285fe22 12b7f59 ca869ab 12b7f59 285fe22 12b7f59 285fe22 12b7f59 285fe22 12b7f59 285fe22 12b7f59 285fe22 12b7f59 0feaa66 2b455b2 0feaa66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import gradio as gr
import os
from PIL import Image
import subprocess
os.system('pip install -e ./simple-knn')
os.system('pip install -e ./diff-gaussian-rasterization')
# check if there is a picture uploaded or selected
def check_img_input(control_image):
if control_image is None:
raise gr.Error("Please select or upload an input image")
def optimize(image_block: Image.Image, preprocess_chk=True, elevation_slider=0):
stage_1_output = optimize_stage_1(image_block, preprocess_chk, elevation_slider)
stage_2_output = optimize_stage_2(elevation_slider)
return stage_1_output, stage_2_output
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, elevation_slider: float):
if not os.path.exists('tmp_data'):
os.makedirs('tmp_data')
if preprocess_chk:
# save image to a designated path
image_block.save('tmp_data/tmp.png')
# preprocess image
subprocess.run([f'python process.py tmp_data/tmp.png'], shell=True)
else:
image_block.save('tmp_data/tmp_rgba.png')
# stage 1
subprocess.run([
f'python main.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
shell=True)
return f'logs/tmp_mesh.glb'
def optimize_stage_2(elevation_slider: float):
# stage 2
subprocess.run([
f'python main2.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
shell=True)
return f'logs/tmp.glb'
if __name__ == "__main__":
_TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a>
</div>
We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation.
'''
_DUPLICATE ='''
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg)](https://huggingface.co/spaces/jiawei011/dreamgaussian?duplicate=true)
'''
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Generate 3D**."
# load images in 'data' folder as examples
example_folder = os.path.join(os.path.dirname(__file__), 'data')
example_fns = os.listdir(example_folder)
example_fns.sort()
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
# Compose demo layout & data flow
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
with gr.Column(scale=0):
gr.Markdown(_DUPLICATE)
gr.Markdown(_DESCRIPTION)
# Image-to-3D
with gr.Row(variant='panel'):
left_column = gr.Column(scale=5)
with left_column:
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
gr.Markdown(
"default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30")
preprocess_chk = gr.Checkbox(True,
label='Preprocess image automatically (remove background and recenter object)')
with gr.Column(scale=5):
obj3d_stage1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Stage 1)")
obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
with left_column:
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block],
outputs=[obj3d_stage1, obj3d],
fn=optimize,
cache_examples=True,
label='Examples (click one of the images below to start)',
examples_per_page=40
)
img_run_btn = gr.Button("Generate 3D")
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)
# if there is an input image, continue with inference
# else display an error message
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1,
inputs=[image_block,
preprocess_chk,
elevation_slider],
outputs=[
obj3d_stage1]).success(
optimize_stage_2, inputs=[elevation_slider], outputs=[obj3d])
# demo.launch(enable_queue=True)
demo.queue(max_size=10) # <-- Sets up a queue with default parameters
demo.launch() |