Spaces:
Sleeping
Sleeping
Finalize PDF function and update on hf-hub
Browse files- Dockerfile +5 -0
- main.py +14 -5
- pdf.py +14 -0
- plots.py +61 -21
- s2.py +237 -92
Dockerfile
CHANGED
@@ -14,6 +14,8 @@ RUN mkdir -p /var/run/supervisor && chmod 777 /var/run/supervisor
|
|
14 |
# Install supervisord and python (for gradio)
|
15 |
RUN apt-get update && apt-get install -y supervisor python3 python3-pip && rm -rf /var/lib/apt/lists/*
|
16 |
RUN pip3 install gradio
|
|
|
|
|
17 |
|
18 |
# Copy your gradio app to the image
|
19 |
COPY . /app/
|
@@ -22,6 +24,9 @@ COPY ./data /app/data
|
|
22 |
# Install gradio
|
23 |
RUN pip3 install -r /app/requirements.txt
|
24 |
|
|
|
|
|
|
|
25 |
# Supervisord configuration
|
26 |
RUN echo "[supervisord]" > /etc/supervisor/conf.d/supervisord.conf && \
|
27 |
echo "nodaemon=true" >> /etc/supervisor/conf.d/supervisord.conf && \
|
|
|
14 |
# Install supervisord and python (for gradio)
|
15 |
RUN apt-get update && apt-get install -y supervisor python3 python3-pip && rm -rf /var/lib/apt/lists/*
|
16 |
RUN pip3 install gradio
|
17 |
+
RUN pip3 install git+https://github.com/kermitt2/grobid_client_python
|
18 |
+
RUN pip3 install git+https://github.com/titipata/scipdf_parser
|
19 |
|
20 |
# Copy your gradio app to the image
|
21 |
COPY . /app/
|
|
|
24 |
# Install gradio
|
25 |
RUN pip3 install -r /app/requirements.txt
|
26 |
|
27 |
+
# Download spacy en_core_web_sm
|
28 |
+
RUN python3 -m spacy download en_core_web_sm
|
29 |
+
|
30 |
# Supervisord configuration
|
31 |
RUN echo "[supervisord]" > /etc/supervisor/conf.d/supervisord.conf && \
|
32 |
echo "nodaemon=true" >> /etc/supervisor/conf.d/supervisord.conf && \
|
main.py
CHANGED
@@ -14,6 +14,7 @@ from s2 import (
|
|
14 |
compute_stats_for_acl_author,
|
15 |
compute_stats_for_acl_paper,
|
16 |
compute_stats_for_acl_venue,
|
|
|
17 |
compute_stats_for_s2_author,
|
18 |
compute_stats_for_s2_paper,
|
19 |
)
|
@@ -35,25 +36,32 @@ def create_compute_stats(submit_type=None):
|
|
35 |
id_type, author_name = check_s2_id_type(s2_id)
|
36 |
if id_type == "paper":
|
37 |
results = compute_stats_for_s2_paper(s2_id)
|
|
|
38 |
return plot_and_return_stats(*results)
|
39 |
if id_type == "author":
|
40 |
results = compute_stats_for_s2_author(s2_id, author_name)
|
|
|
41 |
return plot_and_return_stats(*results)
|
42 |
if submit_type == "acl_link" and acl_link:
|
43 |
# Crawl all papers for the author or venue or just the paper if it is a paper link
|
44 |
url_type = determine_page_type(acl_link)
|
45 |
if url_type == "paper":
|
46 |
results = compute_stats_for_acl_paper(acl_link)
|
|
|
47 |
return plot_and_return_stats(*results)
|
48 |
if url_type == "author":
|
49 |
results = compute_stats_for_acl_author(acl_link)
|
|
|
50 |
return plot_and_return_stats(*results)
|
51 |
if url_type == "venue":
|
52 |
results = compute_stats_for_acl_venue(acl_link)
|
|
|
53 |
return plot_and_return_stats(*results)
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
return None, None, None, None, None, None, None, None
|
58 |
|
59 |
return compute_stats
|
@@ -67,6 +75,7 @@ def plot_and_return_stats(
|
|
67 |
cfdi,
|
68 |
cadi,
|
69 |
maoc,
|
|
|
70 |
):
|
71 |
"""
|
72 |
Plots the data and returns statistics.
|
@@ -85,10 +94,10 @@ def plot_and_return_stats(
|
|
85 |
the most common oldest papers, the cfdi, cadi, and the plots for cfdi and maoc.
|
86 |
"""
|
87 |
# Generate cfdi plot
|
88 |
-
plot_cfdi = generate_cfdi_plot(cfdi)
|
89 |
|
90 |
# Generate cadi plot
|
91 |
-
plot_maoc = generate_maoc_plot(maoc)
|
92 |
|
93 |
# Get top 3 most cited fields
|
94 |
top_fields_text = "\n".join(
|
|
|
14 |
compute_stats_for_acl_author,
|
15 |
compute_stats_for_acl_paper,
|
16 |
compute_stats_for_acl_venue,
|
17 |
+
compute_stats_for_pdf,
|
18 |
compute_stats_for_s2_author,
|
19 |
compute_stats_for_s2_paper,
|
20 |
)
|
|
|
36 |
id_type, author_name = check_s2_id_type(s2_id)
|
37 |
if id_type == "paper":
|
38 |
results = compute_stats_for_s2_paper(s2_id)
|
39 |
+
results = results + ("paper",)
|
40 |
return plot_and_return_stats(*results)
|
41 |
if id_type == "author":
|
42 |
results = compute_stats_for_s2_author(s2_id, author_name)
|
43 |
+
results = results + ("author",)
|
44 |
return plot_and_return_stats(*results)
|
45 |
if submit_type == "acl_link" and acl_link:
|
46 |
# Crawl all papers for the author or venue or just the paper if it is a paper link
|
47 |
url_type = determine_page_type(acl_link)
|
48 |
if url_type == "paper":
|
49 |
results = compute_stats_for_acl_paper(acl_link)
|
50 |
+
results = results + ("paper",)
|
51 |
return plot_and_return_stats(*results)
|
52 |
if url_type == "author":
|
53 |
results = compute_stats_for_acl_author(acl_link)
|
54 |
+
results = results + ("author",)
|
55 |
return plot_and_return_stats(*results)
|
56 |
if url_type == "venue":
|
57 |
results = compute_stats_for_acl_venue(acl_link)
|
58 |
+
results = results + ("proceedings",)
|
59 |
return plot_and_return_stats(*results)
|
60 |
+
if submit_type == "pdf_file" and pdf_file:
|
61 |
+
# Compute the citation field diversity index and citation age diversity index
|
62 |
+
results = asyncio.run(compute_stats_for_pdf(pdf_file))
|
63 |
+
results = results + ("paper",)
|
64 |
+
return plot_and_return_stats(*results)
|
65 |
return None, None, None, None, None, None, None, None
|
66 |
|
67 |
return compute_stats
|
|
|
75 |
cfdi,
|
76 |
cadi,
|
77 |
maoc,
|
78 |
+
compute_type,
|
79 |
):
|
80 |
"""
|
81 |
Plots the data and returns statistics.
|
|
|
94 |
the most common oldest papers, the cfdi, cadi, and the plots for cfdi and maoc.
|
95 |
"""
|
96 |
# Generate cfdi plot
|
97 |
+
plot_cfdi = generate_cfdi_plot(cfdi, compute_type)
|
98 |
|
99 |
# Generate cadi plot
|
100 |
+
plot_maoc = generate_maoc_plot(maoc, compute_type)
|
101 |
|
102 |
# Get top 3 most cited fields
|
103 |
top_fields_text = "\n".join(
|
pdf.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import scipdf
|
2 |
+
|
3 |
+
|
4 |
+
def parse_pdf_to_artcile_dict(pdf_path):
|
5 |
+
return scipdf.parse_pdf_to_dict(pdf_path)
|
6 |
+
|
7 |
+
|
8 |
+
if __name__ == "__main__":
|
9 |
+
article_dict = scipdf.parse_pdf_to_dict(
|
10 |
+
"/Users/jp/Documents/papers/demo-test/EMNLP23_Influence_NLP_Citation_Analysis.pdf"
|
11 |
+
) # return dictionary
|
12 |
+
print(article_dict.keys())
|
13 |
+
print(article_dict["title"])
|
14 |
+
print(article_dict["references"][0].keys())
|
plots.py
CHANGED
@@ -33,7 +33,7 @@ with open(
|
|
33 |
mean_citation_ages.append(temp)
|
34 |
|
35 |
|
36 |
-
def generate_cfdi_plot(input_cfdi):
|
37 |
"""
|
38 |
Function to generate a plot for CFDI
|
39 |
"""
|
@@ -56,20 +56,40 @@ def generate_cfdi_plot(input_cfdi):
|
|
56 |
interpolated_y_cfdi,
|
57 |
c="r",
|
58 |
marker="*",
|
59 |
-
linewidths=
|
60 |
zorder=2,
|
|
|
61 |
)
|
62 |
ax.vlines(
|
63 |
-
input_cfdi,
|
|
|
|
|
|
|
|
|
|
|
64 |
)
|
|
|
65 |
epsilon = 0.005
|
66 |
-
#
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
ax.set_xlabel("Citation Field Diversity Index (CFDI)", fontsize=15)
|
75 |
ax.set_ylabel("Density", fontsize=15)
|
@@ -78,9 +98,9 @@ def generate_cfdi_plot(input_cfdi):
|
|
78 |
return fig
|
79 |
|
80 |
|
81 |
-
def generate_maoc_plot(input_maoc):
|
82 |
"""
|
83 |
-
Function to generate a plot for
|
84 |
"""
|
85 |
# Using kdeplot to fill the distribution curve
|
86 |
sns.set(font_scale=1.3, style="whitegrid")
|
@@ -100,20 +120,40 @@ def generate_maoc_plot(input_maoc):
|
|
100 |
interpolated_y_cfdi,
|
101 |
c="r",
|
102 |
marker="*",
|
103 |
-
linewidths=
|
104 |
zorder=2,
|
|
|
105 |
)
|
106 |
ax.vlines(
|
107 |
-
input_maoc,
|
|
|
|
|
|
|
|
|
|
|
108 |
)
|
|
|
109 |
epsilon = 0.005
|
110 |
-
#
|
111 |
-
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
ax.set_xlabel("Mean Age of Citation (mAoC)", fontsize=15)
|
119 |
ax.set_ylabel("Density", fontsize=15)
|
|
|
33 |
mean_citation_ages.append(temp)
|
34 |
|
35 |
|
36 |
+
def generate_cfdi_plot(input_cfdi, compute_type="paper"):
|
37 |
"""
|
38 |
Function to generate a plot for CFDI
|
39 |
"""
|
|
|
56 |
interpolated_y_cfdi,
|
57 |
c="r",
|
58 |
marker="*",
|
59 |
+
linewidths=2,
|
60 |
zorder=2,
|
61 |
+
s=32,
|
62 |
)
|
63 |
ax.vlines(
|
64 |
+
input_cfdi,
|
65 |
+
0,
|
66 |
+
interpolated_y_cfdi,
|
67 |
+
color="tomato",
|
68 |
+
ls="--",
|
69 |
+
lw=1.5,
|
70 |
)
|
71 |
+
|
72 |
epsilon = 0.005
|
73 |
+
# Compute the average and plot it as a light grey vertical line
|
74 |
+
mean_val = np.mean(data)
|
75 |
+
# Interpolate the y value for the mean
|
76 |
+
interpolated_y_mean = np.interp(mean_val, x_vals, y_vals)
|
77 |
+
|
78 |
+
ax.vlines(mean_val, 0, interpolated_y_mean, color="grey", ls="--", lw=1.5)
|
79 |
+
ax.text(
|
80 |
+
mean_val + epsilon,
|
81 |
+
interpolated_y_mean + epsilon,
|
82 |
+
"Avg.",
|
83 |
+
{"color": "grey", "fontsize": 13},
|
84 |
+
ha="left", # Horizontal alignment
|
85 |
+
)
|
86 |
+
ax.text(
|
87 |
+
input_cfdi + epsilon,
|
88 |
+
interpolated_y_cfdi + epsilon,
|
89 |
+
f"This {compute_type}",
|
90 |
+
{"color": "#DC143C", "fontsize": 13},
|
91 |
+
ha="left", # Horizontal alignment
|
92 |
+
)
|
93 |
|
94 |
ax.set_xlabel("Citation Field Diversity Index (CFDI)", fontsize=15)
|
95 |
ax.set_ylabel("Density", fontsize=15)
|
|
|
98 |
return fig
|
99 |
|
100 |
|
101 |
+
def generate_maoc_plot(input_maoc, compute_type="paper"):
|
102 |
"""
|
103 |
+
Function to generate a plot for MAOC
|
104 |
"""
|
105 |
# Using kdeplot to fill the distribution curve
|
106 |
sns.set(font_scale=1.3, style="whitegrid")
|
|
|
120 |
interpolated_y_cfdi,
|
121 |
c="r",
|
122 |
marker="*",
|
123 |
+
linewidths=2,
|
124 |
zorder=2,
|
125 |
+
s=32,
|
126 |
)
|
127 |
ax.vlines(
|
128 |
+
input_maoc,
|
129 |
+
0,
|
130 |
+
interpolated_y_cfdi,
|
131 |
+
color="tomato",
|
132 |
+
ls="--",
|
133 |
+
lw=1.5,
|
134 |
)
|
135 |
+
|
136 |
epsilon = 0.005
|
137 |
+
# Compute the average and plot it as a light grey vertical line
|
138 |
+
mean_val = np.mean(data)
|
139 |
+
# Interpolate the y value for the mean
|
140 |
+
interpolated_y_mean = np.interp(mean_val, x_vals, y_vals)
|
141 |
+
|
142 |
+
ax.vlines(mean_val, 0, interpolated_y_mean, color="grey", ls="--", lw=1.5)
|
143 |
+
ax.text(
|
144 |
+
mean_val + epsilon,
|
145 |
+
interpolated_y_mean + epsilon,
|
146 |
+
"Avg.",
|
147 |
+
{"color": "grey", "fontsize": 13},
|
148 |
+
ha="left", # Horizontal alignment
|
149 |
+
)
|
150 |
+
ax.text(
|
151 |
+
input_maoc + epsilon,
|
152 |
+
interpolated_y_cfdi + epsilon,
|
153 |
+
f"This {compute_type}",
|
154 |
+
{"color": "#DC143C", "fontsize": 13},
|
155 |
+
ha="left", # Horizontal alignment
|
156 |
+
)
|
157 |
|
158 |
ax.set_xlabel("Mean Age of Citation (mAoC)", fontsize=15)
|
159 |
ax.set_ylabel("Density", fontsize=15)
|
s2.py
CHANGED
@@ -1,11 +1,15 @@
|
|
1 |
# Copyright 2023 by Jan Philip Wahle, https://jpwahle.com/
|
2 |
# All rights reserved.
|
3 |
|
|
|
4 |
import asyncio
|
|
|
5 |
import os
|
6 |
from collections import Counter
|
7 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
8 |
|
|
|
9 |
import requests
|
10 |
|
11 |
from aclanthology import (
|
@@ -15,9 +19,16 @@ from aclanthology import (
|
|
15 |
extract_venue_info,
|
16 |
)
|
17 |
from metrics import calculate_gini, calculate_gini_simpson
|
|
|
18 |
|
19 |
|
20 |
def get_or_create_eventloop():
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
return asyncio.get_event_loop()
|
23 |
except RuntimeError as ex:
|
@@ -56,12 +67,10 @@ def check_s2_id_type(semantic_scholar_id):
|
|
56 |
the name of the author (if the ID is valid for an author), or "invalid"
|
57 |
if the ID is not valid for either a paper or an author.
|
58 |
"""
|
59 |
-
# Define the base URL for Semantic Scholar API
|
60 |
-
base_url = "https://api.semanticscholar.org/v1/"
|
61 |
-
|
62 |
# First, check if it's a paper ID
|
63 |
paper_response = requests.get(
|
64 |
-
f"
|
|
|
65 |
)
|
66 |
|
67 |
# If the response status code is 200, it means the ID is valid for a paper
|
@@ -70,7 +79,8 @@ def check_s2_id_type(semantic_scholar_id):
|
|
70 |
|
71 |
# Next, check if it's an author ID
|
72 |
author_response = requests.get(
|
73 |
-
f"
|
|
|
74 |
)
|
75 |
|
76 |
# If the response status code is 200, it means the ID is valid for an author
|
@@ -101,6 +111,115 @@ def get_papers_from_author(ssid_author_id):
|
|
101 |
return []
|
102 |
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def compute_stats_for_s2_paper(ssid_paper_id):
|
105 |
"""
|
106 |
Computes statistics for a given paper ID using the Semantic Scholar API.
|
@@ -143,87 +262,14 @@ def compute_stats_for_s2_paper(ssid_paper_id):
|
|
143 |
title + "\n" + ", ".join([author["name"] for author in authors])
|
144 |
)
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
]
|
155 |
-
futures = [
|
156 |
-
executor.submit(send_s2_request, request_url_ref)
|
157 |
-
for request_url_ref in request_url_refs
|
158 |
-
]
|
159 |
-
for future in as_completed(futures):
|
160 |
-
r_ref = future.result()
|
161 |
-
if r_ref.status_code == 200:
|
162 |
-
result_ref = r_ref.json()
|
163 |
-
(title_ref, year_ref, fields_ref) = (
|
164 |
-
result_ref["title"],
|
165 |
-
result_ref["year"],
|
166 |
-
result_ref["s2FieldsOfStudy"],
|
167 |
-
)
|
168 |
-
reference_year_list.append(year_ref)
|
169 |
-
reference_title_list.append(title_ref)
|
170 |
-
reference_fos_list.extend(
|
171 |
-
field["category"]
|
172 |
-
for field in fields_ref
|
173 |
-
if field["source"] == "s2-fos-model"
|
174 |
-
)
|
175 |
-
else:
|
176 |
-
print(
|
177 |
-
f"Error retrieving reference {r_ref.status_code} for"
|
178 |
-
f" paper {ssid_paper_id}"
|
179 |
-
)
|
180 |
-
|
181 |
-
# Remove all None from reference_year_list and reference_title_list
|
182 |
-
reference_year_list = [
|
183 |
-
year_ref
|
184 |
-
for year_ref in reference_year_list
|
185 |
-
if year_ref is not None
|
186 |
-
]
|
187 |
-
reference_title_list = [
|
188 |
-
title_ref
|
189 |
-
for title_ref in reference_title_list
|
190 |
-
if title_ref is not None
|
191 |
-
]
|
192 |
-
|
193 |
-
# Count references
|
194 |
-
num_references = len(reference_year_list)
|
195 |
-
|
196 |
-
# Flatten list and count occurrences
|
197 |
-
fields_of_study_counts = dict(
|
198 |
-
Counter(
|
199 |
-
[
|
200 |
-
field
|
201 |
-
for field in reference_fos_list
|
202 |
-
if "Computer Science" not in field
|
203 |
-
]
|
204 |
-
)
|
205 |
-
)
|
206 |
-
|
207 |
-
# Citation age list
|
208 |
-
aoc_list = [
|
209 |
-
year - year_ref
|
210 |
-
for year_ref in reference_year_list
|
211 |
-
if year_ref and year
|
212 |
-
]
|
213 |
-
if not aoc_list:
|
214 |
-
return None, None, None, None, None, None, None, None
|
215 |
-
|
216 |
-
# Compute citation age
|
217 |
-
output_maoc = sum(aoc_list) / len(aoc_list)
|
218 |
-
cadi = calculate_gini(aoc_list)
|
219 |
-
|
220 |
-
# Create a dictionary of year to title
|
221 |
-
year_to_title_dict = dict(
|
222 |
-
zip(reference_year_list, reference_title_list)
|
223 |
-
)
|
224 |
-
|
225 |
-
# Compute CFDI
|
226 |
-
cfdi = calculate_gini_simpson(fields_of_study_counts)
|
227 |
|
228 |
# Return the results
|
229 |
return (
|
@@ -273,9 +319,6 @@ def compute_stats_for_acl_paper(url):
|
|
273 |
return None
|
274 |
|
275 |
|
276 |
-
import asyncio
|
277 |
-
|
278 |
-
|
279 |
def compute_stats_for_acl_author(url):
|
280 |
"""
|
281 |
Computes statistics for an author's papers in the ACL anthology.
|
@@ -303,6 +346,15 @@ def compute_stats_for_acl_author(url):
|
|
303 |
|
304 |
|
305 |
def compute_stats_for_acl_venue(url):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
if paper_info := extract_venue_info(url):
|
307 |
loop = get_or_create_eventloop()
|
308 |
tasks = [
|
@@ -317,7 +369,26 @@ def compute_stats_for_acl_venue(url):
|
|
317 |
return None
|
318 |
|
319 |
|
320 |
-
def compute_stats_for_multiple_s2_papers(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
num_references = 0
|
322 |
top_fields = {}
|
323 |
oldest_paper_dict = {}
|
@@ -337,8 +408,8 @@ def compute_stats_for_multiple_s2_papers(papers, title):
|
|
337 |
num_references += results[1]
|
338 |
for field, count in results[2].items():
|
339 |
top_fields[field] = top_fields.get(field, 0) + count
|
340 |
-
for year,
|
341 |
-
oldest_paper_dict[year] =
|
342 |
cfdi += results[4]
|
343 |
cadi += results[5]
|
344 |
output_maoc += results[6]
|
@@ -352,3 +423,77 @@ def compute_stats_for_multiple_s2_papers(papers, title):
|
|
352 |
cadi / len(papers),
|
353 |
output_maoc / len(papers),
|
354 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Copyright 2023 by Jan Philip Wahle, https://jpwahle.com/
|
2 |
# All rights reserved.
|
3 |
|
4 |
+
|
5 |
import asyncio
|
6 |
+
import datetime
|
7 |
import os
|
8 |
from collections import Counter
|
9 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
10 |
+
from typing import List, Tuple
|
11 |
|
12 |
+
import aiohttp
|
13 |
import requests
|
14 |
|
15 |
from aclanthology import (
|
|
|
19 |
extract_venue_info,
|
20 |
)
|
21 |
from metrics import calculate_gini, calculate_gini_simpson
|
22 |
+
from pdf import parse_pdf_to_artcile_dict
|
23 |
|
24 |
|
25 |
def get_or_create_eventloop():
|
26 |
+
"""
|
27 |
+
Get the current event loop or create a new one if there is no current event loop in the thread.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
The current event loop.
|
31 |
+
"""
|
32 |
try:
|
33 |
return asyncio.get_event_loop()
|
34 |
except RuntimeError as ex:
|
|
|
67 |
the name of the author (if the ID is valid for an author), or "invalid"
|
68 |
if the ID is not valid for either a paper or an author.
|
69 |
"""
|
|
|
|
|
|
|
70 |
# First, check if it's a paper ID
|
71 |
paper_response = requests.get(
|
72 |
+
f"https://api.semanticscholar.org/v1/paper/{semantic_scholar_id}",
|
73 |
+
timeout=5,
|
74 |
)
|
75 |
|
76 |
# If the response status code is 200, it means the ID is valid for a paper
|
|
|
79 |
|
80 |
# Next, check if it's an author ID
|
81 |
author_response = requests.get(
|
82 |
+
f"https://api.semanticscholar.org/v1/author/{semantic_scholar_id}",
|
83 |
+
timeout=5,
|
84 |
)
|
85 |
|
86 |
# If the response status code is 200, it means the ID is valid for an author
|
|
|
111 |
return []
|
112 |
|
113 |
|
114 |
+
def compute_stats_for_references(s2_ref_paper_keys, year):
|
115 |
+
"""
|
116 |
+
Computes various statistics for a list of reference paper keys.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
s2_ref_paper_keys (list): A list of Semantic Scholar paper keys for the references.
|
120 |
+
year (int): The year of the paper.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
tuple: A tuple containing the following statistics:
|
124 |
+
- num_references (int): The number of references.
|
125 |
+
- fields_of_study_counts (dict): A dictionary containing the count of each field of study.
|
126 |
+
- year_to_title_dict (dict): A dictionary mapping the year of each reference to its title.
|
127 |
+
- cfdi (float): The CFDI (Cumulative Field Diversity Index) of the references.
|
128 |
+
- cadi (float): The CADI (Cumulative Age Diversity Index) of the references.
|
129 |
+
- output_maoc (float): The MAOC (Mean Age of Citation) of the references.
|
130 |
+
|
131 |
+
If there are no valid references, returns a tuple of None values.
|
132 |
+
"""
|
133 |
+
|
134 |
+
# Go over the references of the paper
|
135 |
+
reference_year_list = []
|
136 |
+
reference_title_list = []
|
137 |
+
reference_fos_list = []
|
138 |
+
with ThreadPoolExecutor() as executor:
|
139 |
+
request_url_refs = [
|
140 |
+
f"https://api.semanticscholar.org/graph/v1/paper/{ref_paper_key}?fields=title,year,s2FieldsOfStudy"
|
141 |
+
for ref_paper_key in s2_ref_paper_keys
|
142 |
+
]
|
143 |
+
futures = [
|
144 |
+
executor.submit(send_s2_request, request_url_ref)
|
145 |
+
for request_url_ref in request_url_refs
|
146 |
+
]
|
147 |
+
for future in as_completed(futures):
|
148 |
+
r_ref = future.result()
|
149 |
+
if r_ref.status_code == 200:
|
150 |
+
result_ref = r_ref.json()
|
151 |
+
(title_ref, year_ref, fields_ref) = (
|
152 |
+
result_ref["title"],
|
153 |
+
result_ref["year"],
|
154 |
+
result_ref["s2FieldsOfStudy"],
|
155 |
+
)
|
156 |
+
reference_year_list.append(year_ref)
|
157 |
+
reference_title_list.append(title_ref)
|
158 |
+
reference_fos_list.extend(
|
159 |
+
field["category"]
|
160 |
+
for field in fields_ref
|
161 |
+
if field["source"] == "s2-fos-model"
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
print(
|
165 |
+
f"Error retrieving reference {r_ref.status_code} for"
|
166 |
+
f" paper {s2_ref_paper_keys}"
|
167 |
+
)
|
168 |
+
|
169 |
+
# Remove all None from reference_year_list and reference_title_list
|
170 |
+
reference_year_list = [
|
171 |
+
year_ref for year_ref in reference_year_list if year_ref is not None
|
172 |
+
]
|
173 |
+
reference_title_list = [
|
174 |
+
title_ref
|
175 |
+
for title_ref in reference_title_list
|
176 |
+
if title_ref is not None
|
177 |
+
]
|
178 |
+
|
179 |
+
# Count references
|
180 |
+
num_references = len(reference_year_list)
|
181 |
+
|
182 |
+
# Flatten list and count occurrences
|
183 |
+
fields_of_study_counts = dict(
|
184 |
+
Counter(
|
185 |
+
[
|
186 |
+
field
|
187 |
+
for field in reference_fos_list
|
188 |
+
if "Computer Science" not in field
|
189 |
+
]
|
190 |
+
)
|
191 |
+
)
|
192 |
+
|
193 |
+
# Citation age list
|
194 |
+
aoc_list = [
|
195 |
+
year - year_ref
|
196 |
+
for year_ref in reference_year_list
|
197 |
+
if year_ref and year
|
198 |
+
]
|
199 |
+
if not aoc_list:
|
200 |
+
return None, None, None, None, None, None
|
201 |
+
|
202 |
+
# Compute citation age
|
203 |
+
output_maoc = sum(aoc_list) / len(aoc_list)
|
204 |
+
cadi = calculate_gini(aoc_list)
|
205 |
+
|
206 |
+
# Create a dictionary of year to title
|
207 |
+
year_to_title_dict = dict(zip(reference_year_list, reference_title_list))
|
208 |
+
|
209 |
+
# Compute CFDI
|
210 |
+
cfdi = calculate_gini_simpson(fields_of_study_counts)
|
211 |
+
|
212 |
+
# Return the results
|
213 |
+
return (
|
214 |
+
num_references,
|
215 |
+
fields_of_study_counts,
|
216 |
+
year_to_title_dict,
|
217 |
+
cfdi,
|
218 |
+
cadi,
|
219 |
+
output_maoc,
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
def compute_stats_for_s2_paper(ssid_paper_id):
|
224 |
"""
|
225 |
Computes statistics for a given paper ID using the Semantic Scholar API.
|
|
|
262 |
title + "\n" + ", ".join([author["name"] for author in authors])
|
263 |
)
|
264 |
|
265 |
+
(
|
266 |
+
num_references,
|
267 |
+
fields_of_study_counts,
|
268 |
+
year_to_title_dict,
|
269 |
+
cfdi,
|
270 |
+
cadi,
|
271 |
+
output_maoc,
|
272 |
+
) = compute_stats_for_references(filtered_s2_ref_paper_keys, year)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
# Return the results
|
275 |
return (
|
|
|
319 |
return None
|
320 |
|
321 |
|
|
|
|
|
|
|
322 |
def compute_stats_for_acl_author(url):
|
323 |
"""
|
324 |
Computes statistics for an author's papers in the ACL anthology.
|
|
|
346 |
|
347 |
|
348 |
def compute_stats_for_acl_venue(url):
|
349 |
+
"""
|
350 |
+
Computes statistics for papers in a given ACL venue.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
url (str): The URL of the ACL venue.
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
dict: A dictionary containing statistics for the papers in the venue.
|
357 |
+
"""
|
358 |
if paper_info := extract_venue_info(url):
|
359 |
loop = get_or_create_eventloop()
|
360 |
tasks = [
|
|
|
369 |
return None
|
370 |
|
371 |
|
372 |
+
def compute_stats_for_multiple_s2_papers(
|
373 |
+
papers: List[dict], title: str
|
374 |
+
) -> Tuple[str, int, dict, dict, float, float, float]:
|
375 |
+
"""
|
376 |
+
Computes statistics for multiple S2 papers.
|
377 |
+
|
378 |
+
Args:
|
379 |
+
papers (List[dict]): A list of S2 papers.
|
380 |
+
title (str): The title of the papers.
|
381 |
+
|
382 |
+
Returns:
|
383 |
+
A tuple containing the following statistics:
|
384 |
+
- title (str): The title of the papers.
|
385 |
+
- num_references (int): The total number of references in all papers.
|
386 |
+
- top_fields (dict): A dictionary containing the top fields and their counts.
|
387 |
+
- oldest_paper_dict (dict): A dictionary containing the oldest paper for each year.
|
388 |
+
- cfdi (float): The average CFDI score for all papers.
|
389 |
+
- cadi (float): The average CADI score for all papers.
|
390 |
+
- output_maoc (float): The average output MAOC score for all papers.
|
391 |
+
"""
|
392 |
num_references = 0
|
393 |
top_fields = {}
|
394 |
oldest_paper_dict = {}
|
|
|
408 |
num_references += results[1]
|
409 |
for field, count in results[2].items():
|
410 |
top_fields[field] = top_fields.get(field, 0) + count
|
411 |
+
for year, ref_title in results[3].items():
|
412 |
+
oldest_paper_dict[year] = ref_title
|
413 |
cfdi += results[4]
|
414 |
cadi += results[5]
|
415 |
output_maoc += results[6]
|
|
|
423 |
cadi / len(papers),
|
424 |
output_maoc / len(papers),
|
425 |
)
|
426 |
+
|
427 |
+
|
428 |
+
async def send_s2_async_request(url):
|
429 |
+
"""
|
430 |
+
Sends an asynchronous request to the specified URL and returns the response as a JSON object.
|
431 |
+
|
432 |
+
Args:
|
433 |
+
url (str): The URL to send the request to.
|
434 |
+
|
435 |
+
Returns:
|
436 |
+
dict: The response from the URL as a JSON object.
|
437 |
+
"""
|
438 |
+
async with aiohttp.ClientSession() as session:
|
439 |
+
async with session.get(url) as response:
|
440 |
+
return await response.json()
|
441 |
+
|
442 |
+
|
443 |
+
async def match_title_to_s2_paper(title, authors=None):
|
444 |
+
"""
|
445 |
+
Matches a given paper title (and authors) to Semantic Scholar to retrieve its S2 paper ID.
|
446 |
+
|
447 |
+
Args:
|
448 |
+
title (str): The title of the paper.
|
449 |
+
authors (List[str], optional): List of authors of the paper. Defaults to None.
|
450 |
+
|
451 |
+
Returns:
|
452 |
+
str or None: Returns the S2 paper ID if found, otherwise None.
|
453 |
+
"""
|
454 |
+
# Send a request to the Semantic Scholar API to search for the paper by its title
|
455 |
+
search_url = (
|
456 |
+
f"http://api.semanticscholar.org/graph/v1/paper/search?query={title}"
|
457 |
+
)
|
458 |
+
|
459 |
+
# Send request
|
460 |
+
response = await send_s2_async_request(search_url)
|
461 |
+
|
462 |
+
results = response.get("data", [])
|
463 |
+
if len(results) > 0:
|
464 |
+
result = results[0] # Ranked by relevance
|
465 |
+
return result.get("paperId")
|
466 |
+
|
467 |
+
|
468 |
+
async def compute_stats_for_pdf(pdf_file):
|
469 |
+
"""
|
470 |
+
Computes statistics for a given PDF file.
|
471 |
+
|
472 |
+
Args:
|
473 |
+
pdf_file (file): The PDF file to compute statistics for.
|
474 |
+
|
475 |
+
Returns:
|
476 |
+
tuple: A tuple containing the title of the article and the computed statistics.
|
477 |
+
"""
|
478 |
+
s2_paper_ids = []
|
479 |
+
article_dict = parse_pdf_to_artcile_dict(pdf_file.name)
|
480 |
+
references = article_dict["references"]
|
481 |
+
|
482 |
+
# Get S2 paper IDs asynchronously
|
483 |
+
tasks = [
|
484 |
+
match_title_to_s2_paper(reference["title"], reference["authors"])
|
485 |
+
for reference in references
|
486 |
+
if reference["title"]
|
487 |
+
]
|
488 |
+
s2_paper_ids = await asyncio.gather(*tasks)
|
489 |
+
|
490 |
+
# Remove all None values from s2paperids
|
491 |
+
s2_paper_ids = [s2_id for s2_id in s2_paper_ids if s2_id is not None]
|
492 |
+
|
493 |
+
# Compute the current year
|
494 |
+
today = datetime.date.today()
|
495 |
+
year = int(today.strftime("%Y"))
|
496 |
+
|
497 |
+
results = compute_stats_for_references(s2_paper_ids, year)
|
498 |
+
results = (article_dict["title"],) + results
|
499 |
+
return results
|