thesis-demo / app.py
Jonas Rheiner
Update image component
e4a444c
raw
history blame
21.9 kB
import numpy as np
import gradio as gr
from transformers import CLIPProcessor, CLIPModel
import torch
import itertools
import os
import plotly.graph_objects as go
import hashlib
from PIL import Image
import json
os.environ["PYTHONHASHSEED"] = "42"
CUDA_AVAILABLE = torch.cuda.is_available()
print(f"CUDA={CUDA_AVAILABLE}")
device = "cuda" if CUDA_AVAILABLE else "cpu"
if CUDA_AVAILABLE:
print(f"count={torch.cuda.device_count()}")
print(f"current={torch.cuda.get_device_name(torch.cuda.current_device())}")
continent_model = CLIPModel.from_pretrained(
"jrheiner/thesis-clip-geoloc-continent",
token=os.getenv("token"),
)
country_model = CLIPModel.from_pretrained(
"jrheiner/thesis-clip-geoloc-country",
token=os.getenv("token"),
)
processor = CLIPProcessor.from_pretrained(
"jrheiner/thesis-clip-geoloc-continent",
token=os.getenv("token"),
)
continent_model = continent_model.to(device)
country_model = country_model.to(device)
continents = ["Africa", "Asia", "Europe", "North America", "Oceania", "South America"]
countries_per_continent = {
"Africa": [
"Botswana",
"Eswatini",
"Ghana",
"Kenya",
"Lesotho",
"Nigeria",
"Senegal",
"South Africa",
"Rwanda",
"Uganda",
"Tanzania",
"Madagascar",
"Djibouti",
"Mali",
"Libya",
"Morocco",
"Somalia",
"Tunisia",
"Egypt",
"Réunion",
],
"Asia": [
"Bangladesh",
"Bhutan",
"Cambodia",
"China",
"India",
"Indonesia",
"Israel",
"Japan",
"Jordan",
"Kyrgyzstan",
"Laos",
"Malaysia",
"Mongolia",
"Nepal",
"Palestine",
"Philippines",
"Singapore",
"South Korea",
"Sri Lanka",
"Taiwan",
"Thailand",
"United Arab Emirates",
"Vietnam",
"Afghanistan",
"Azerbaijan",
"Cyprus",
"Iran",
"Syria",
"Tajikistan",
"Turkey",
"Russia",
"Pakistan",
"Hong Kong",
],
"Europe": [
"Albania",
"Andorra",
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Czechia",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Iceland",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Montenegro",
"Netherlands",
"North Macedonia",
"Norway",
"Poland",
"Portugal",
"Romania",
"Russia",
"Serbia",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"Ukraine",
"United Kingdom",
"Bosnia and Herzegovina",
"Cyprus",
"Turkey",
"Greenland",
"Faroe Islands",
],
"North America": [
"Canada",
"Dominican Republic",
"Guatemala",
"Mexico",
"United States",
"Bahamas",
"Cuba",
"Panama",
"Puerto Rico",
"Bermuda",
"Greenland",
],
"Oceania": [
"Australia",
"New Zealand",
"Fiji",
"Papua New Guinea",
"Solomon Islands",
"Vanuatu",
],
"South America": [
"Argentina",
"Bolivia",
"Brazil",
"Chile",
"Colombia",
"Ecuador",
"Paraguay",
"Peru",
"Uruguay",
],
}
countries = list(set(itertools.chain.from_iterable(countries_per_continent.values())))
country_to_center_coords = {
"Indonesia": (-2.4833826, 117.8902853),
"Egypt": (26.2540493, 29.2675469),
"Dominican Republic": (19.0974031, -70.3028026),
"Russia": (64.6863136, 97.7453061),
"Denmark": (55.670249, 10.3333283),
"Latvia": (56.8406494, 24.7537645),
"Hong Kong": (22.350627, 114.1849161),
"Brazil": (-10.3333333, -53.2),
"Turkey": (38.9597594, 34.9249653),
"Paraguay": (-23.3165935, -58.1693445),
"Nigeria": (9.6000359, 7.9999721),
"United Kingdom": (54.7023545, -3.2765753),
"Argentina": (-34.9964963, -64.9672817),
"United Arab Emirates": (24.0002488, 53.9994829),
"Estonia": (58.7523778, 25.3319078),
"Greenland": (69.6354163, -42.1736914),
"Canada": (61.0666922, -107.991707),
"Andorra": (42.5407167, 1.5732033),
"Czechia": (49.7439047, 15.3381061),
"Australia": (-24.7761086, 134.755),
"Azerbaijan": (40.3936294, 47.7872508),
"Cambodia": (12.5433216, 104.8144914),
"Peru": (-6.8699697, -75.0458515),
"Slovakia": (48.7411522, 19.4528646),
"Réunion": (-21.130737949999997, 55.536480112992315),
"France": (46.603354, 1.8883335),
"Israel": (30.8124247, 34.8594762),
"China": (35.000074, 104.999927),
"Ecuador": (-1.3397668, -79.3666965),
"Poland": (52.215933, 19.134422),
"Switzerland": (46.7985624, 8.2319736),
"Singapore": (1.357107, 103.8194992),
"Kenya": (1.4419683, 38.4313975),
"Bhutan": (27.549511, 90.5119273),
"Laos": (20.0171109, 103.378253),
"Vietnam": (15.9266657, 107.9650855),
"Puerto Rico": (18.2247706, -66.4858295),
"Germany": (51.1638175, 10.4478313),
"Tanzania": (-6.5247123, 35.7878438),
"Colombia": (4.099917, -72.9088133),
"Italy": (42.6384261, 12.674297),
"Bahamas": (24.7736546, -78.0000547),
"Panama": (8.559559, -81.1308434),
"Bulgaria": (42.6073975, 25.4856617),
"Solomon Islands": (-8.7053941, 159.1070693851845),
"Afghanistan": (33.7680065, 66.2385139),
"Tajikistan": (38.6281733, 70.8156541),
"Portugal": (39.6621648, -8.1353519),
"Tunisia": (36.8002068, 10.1857757),
"Bolivia": (-17.0568696, -64.9912286),
"Malaysia": (4.5693754, 102.2656823),
"Lithuania": (55.3500003, 23.7499997),
"Sweden": (59.6749712, 14.5208584),
"Belgium": (50.6402809, 4.6667145),
"Libya": (26.8234472, 18.1236723),
"Guatemala": (15.5855545, -90.345759),
"India": (22.3511148, 78.6677428),
"Sri Lanka": (7.5554942, 80.7137847),
"New Zealand": (-41.5000831, 172.8344077),
"Iceland": (64.9841821, -18.1059013),
"Somalia": (8.3676771, 49.083416),
"Croatia": (45.3658443, 15.6575209),
"Bosnia and Herzegovina": (44.3053476, 17.5961467),
"Greece": (38.9953683, 21.9877132),
"Rwanda": (-1.9646631, 30.0644358),
"Hungary": (47.1817585, 19.5060937),
"Eswatini": (-26.5624806, 31.3991317),
"Kyrgyzstan": (41.5089324, 74.724091),
"Bangladesh": (23.6943117, 90.344352),
"Morocco": (28.3347722, -10.371337908392647),
"Finland": (63.2467777, 25.9209164),
"Luxembourg": (49.6112768, 6.129799),
"North Macedonia": (41.6171214, 21.7168387),
"Uruguay": (-32.8755548, -56.0201525),
"Chile": (-31.7613365, -71.3187697),
"Spain": (39.3260685, -4.8379791),
"South Korea": (36.638392, 127.6961188),
"Botswana": (-23.1681782, 24.5928742),
"Uganda": (1.5333554, 32.2166578),
"Papua New Guinea": (-5.6816069, 144.2489081),
"Mali": (16.3700359, -2.2900239),
"Philippines": (12.7503486, 122.7312101),
"Norway": (64.5731537, 11.52803643954819),
"Thailand": (14.8971921, 100.83273),
"Mongolia": (46.8651082, 103.8347844),
"Japan": (36.5748441, 139.2394179),
"Montenegro": (42.7044223, 19.3957785),
"Austria": (47.59397, 14.12456),
"Taiwan": (23.6978, 120.9605),
"Netherlands": (52.2434979, 5.6343227),
"Ukraine": (49.4871968, 31.2718321),
"Fiji": (-18.1239696, 179.0122737),
"Ghana": (8.0300284, -1.0800271),
"Cuba": (23.0131338, -80.8328748),
"Nepal": (28.3780464, 83.9999901),
"Faroe Islands": (62.0448724, -7.0322972),
"Slovenia": (46.1199444, 14.8153333),
"Cyprus": (34.9174159, 32.889902651331866),
"Serbia": (44.024322850000004, 21.07657433209902),
"Madagascar": (-18.9249604, 46.4416422),
"Pakistan": (30.3308401, 71.247499),
"Syria": (34.6401861, 39.0494106),
"Iran": (32.6475314, 54.5643516),
"Ireland": (52.865196, -7.9794599),
"South Africa": (-28.8166236, 24.991639),
"Albania": (41.1529058, 20.1605717),
"Lesotho": (-29.6039267, 28.3350193),
"Romania": (45.9852129, 24.6859225),
"Palestine": (31.947351, 35.227163),
"Vanuatu": (-16.5255069, 168.1069154),
"Mexico": (19.4326296, -99.1331785),
"Jordan": (31.279862, 37.1297454),
"Djibouti": (11.8145966, 42.8453061),
"Senegal": (14.4750607, -14.4529612),
"Bermuda": (32.3040273, -64.7563086),
"United States": (39.7837304, -100.445882),
}
INTIAL_VERSUS_IMAGE = "versus_images/Europe_Germany_49.069183_10.319444_im2gps3k.jpg"
INITAL_VERSUS_STATE = {
"image": INTIAL_VERSUS_IMAGE,
"continent": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[0],
"country": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[1],
"lat": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[2],
"lon": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[3],
"score": {"HUMAN": 0, "AI": 0},
"idx": 0,
}
def predict(input_img):
inputs = processor(
text=[f"A photo from {geo}." for geo in continents],
images=input_img,
return_tensors="pt",
padding=True,
)
inputs = inputs.to(device)
with torch.no_grad():
outputs = continent_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=-1)
pred_id = probs.argmax().cpu().item()
continent_probs = {
label: prob for label, prob in zip(continents, probs.tolist()[0])
}
model_continent = continents[pred_id]
predicted_continent_countries = countries_per_continent[model_continent]
inputs = processor(
text=[f"A photo from {geo}." for geo in predicted_continent_countries],
images=input_img,
return_tensors="pt",
padding=True,
)
inputs = inputs.to(device)
with torch.no_grad():
outputs = country_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=-1)
pred_id = probs.argmax().cpu().item()
model_country = predicted_continent_countries[pred_id]
country_probs = {
label: prob for label, prob in zip(predicted_continent_countries, probs.tolist()[0])
}
hash = hashlib.sha1(np.asarray(input_img).data.tobytes()).hexdigest()
metadata_block = gr.Accordion(visible=False)
metadata_map = None
if hash in EXAMPLE_METADATA.keys():
model_result = ""
if (
model_continent == EXAMPLE_METADATA[hash]["continent"]
and model_country == EXAMPLE_METADATA[hash]["country"]
):
model_result = "The AI 🤖 correctly guessed continent and country ✅ ✅."
elif model_continent == EXAMPLE_METADATA[hash]["continent"]:
model_result = "The AI 🤖 only guessed the correct continent ❌ ✅."
elif (
model_country == EXAMPLE_METADATA[hash]["country"]
and model_continent != EXAMPLE_METADATA[hash]["continent"]
):
model_result = "The AI 🤖 only guessed the correct country ✅ ❌."
else:
model_result = "The AI 🤖 failed to guess country and continent ❌ ❌."
metadata_block = gr.Accordion(
visible=True,
label=f"This photo was taken in {EXAMPLE_METADATA[hash]['country']}, {EXAMPLE_METADATA[hash]['continent']}.\n{model_result}",
)
metadata_map = make_versus_map(None, model_country, EXAMPLE_METADATA[hash])
return continent_probs, country_probs, metadata_block, metadata_map
def make_versus_map(human_country, model_country, versus_state):
if human_country:
human_coordinates = country_to_center_coords[human_country]
else:
human_coordinates = (None, None)
model_coordinates = country_to_center_coords[model_country]
fig = go.Figure()
fig.add_trace(
go.Scattermapbox(
lon=[versus_state["lon"]],
lat=[versus_state["lat"]],
text=[f"📷 Photo taken in {versus_state['country']}, {versus_state['continent']}"],
mode="markers",
hoverinfo="text",
marker=dict(size=14, color="#0C5DA5"),
showlegend=True,
name="📷 Photo Location",
)
)
if human_country == model_country:
fig.add_trace(
go.Scattermapbox(
lat=[human_coordinates[0], model_coordinates[0]],
lon=[human_coordinates[1], model_coordinates[1]],
text=f"🧑 🤖 Human & AI guess {human_country}",
mode="markers",
hoverinfo="text",
marker=dict(size=14, color="#FF9500"),
showlegend=True,
name="🧑 🤖 Human & AI Guess",
)
)
else:
if human_country:
fig.add_trace(
go.Scattermapbox(
lat=[human_coordinates[0]],
lon=[human_coordinates[1]],
text=[f"🧑 Human guesses {human_country}"],
mode="markers",
hoverinfo="text",
marker=dict(size=14, color="#FF9500"),
showlegend=True,
name="🧑 Human Guess",
)
)
fig.add_trace(
go.Scattermapbox(
lat=[model_coordinates[0]],
lon=[model_coordinates[1]],
text=[f"🤖 AI guesses {model_country}"],
mode="markers",
hoverinfo="text",
marker=dict(size=14, color="#474747"),
showlegend=True,
name="🤖 AI Guess",
)
)
fig.update_layout(
mapbox=dict(
style="carto-positron",
center=dict(lat=float(versus_state["lat"]), lon=float(versus_state["lon"])),
zoom=2,
),
margin={"r": 0, "t": 0, "l": 0, "b": 0},
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.01),
)
return fig
def versus_mode_inputs(input_img, human_continent, human_country, versus_state):
human_points = 0
model_points = 0
if human_country == versus_state["country"]:
country_result = "✅"
human_points += 2
else:
country_result = "❌"
if human_continent == versus_state["continent"]:
continent_result = "✅"
human_points += 1
else:
continent_result = "❌"
human_result = f"The photo is from **{versus_state['country']}** {country_result} in **{versus_state['continent']}** {continent_result}"
human_score_update = (
f"+{human_points} points" if human_points > 0 else "0 Points..."
)
versus_state["score"]["HUMAN"] += human_points
continent_probs, country_probs, _, _ = predict(input_img)
model_country = max(country_probs, key=country_probs.get)
model_continent = max(continent_probs, key=continent_probs.get)
if model_country == versus_state["country"]:
model_country_result = "✅"
model_points += 2
else:
model_country_result = "❌"
if model_continent == versus_state["continent"]:
model_continent_result = "✅"
model_points += 1
else:
model_continent_result = "❌"
model_score_update = (
f"+{model_points} points"
if model_points > 0
else "0 Points... The model was completely wrong, it seems the world is not doomed yet."
)
versus_state["score"]["AI"] += model_points
map = make_versus_map(human_country, model_country, versus_state)
return (
f"""
## {human_result}
### The AI 🤖 thinks this photo is from **{model_country}** {model_country_result} in **{model_continent}** {model_continent_result}
🧑 {human_score_update}
🤖 {model_score_update}
### Score 🧑 {versus_state['score']['HUMAN']} : {versus_state['score']['AI']} 🤖
""",
continent_probs,
country_probs,
map,
versus_state,
)
def get_example_images(dir):
image_extensions = (".jpg", ".jpeg", ".png")
image_files = []
for root, dirs, files in os.walk(dir):
for file in files:
if file.lower().endswith(image_extensions):
image_files.append(os.path.join(root, file))
return image_files
def next_versus_image(versus_state):
images = get_example_images("versus_images")
versus_state["idx"] += 1
if versus_state["idx"] > len(images):
versus_state["idx"] = 0
versus_image = images[versus_state["idx"]]
versus_state["continent"] = versus_image.split("/")[-1].split("_")[0]
versus_state["country"] = versus_image.split("/")[-1].split("_")[1]
versus_state["lat"] = versus_image.split("/")[-1].split("_")[2]
versus_state["lon"] = versus_image.split("/")[-1].split("_")[3]
versus_state["image"] = versus_image
return versus_image, versus_state, None, None
example_images = get_example_images("kerger-test-images")
EXAMPLE_METADATA = {}
for img_path in example_images:
hash = hashlib.sha1(np.asarray(Image.open(img_path)).data.tobytes()).hexdigest()
EXAMPLE_METADATA[hash] = {
"continent": img_path.split("/")[-1].split("_")[0],
"country": img_path.split("/")[-1].split("_")[1],
"lat": img_path.split("/")[-1].split("_")[2],
"lon": img_path.split("/")[-1].split("_")[3],
}
demo = gr.Blocks(title="Thesis Demo")
with demo:
gr.HTML(
"""
<h1 style="text-align: center; margin-bottom: 1rem">Image Geolocation Thesis Demo</h1>
<h3> This Demo showcases the developed models and allows interacting with the optimized prototype.</h3>
<p>Try the <b>"Image Geolocation Demo"</b> tab with your own images or with one of the examples. For all example image the ground truth is available and will be displayed together with the model predictions.</p>
<p>In the <b>"Versus Mode"</b> tab you can play against the AI, guessing the country and continent where images where taken. Images in the versus mode are from the <a href="http://graphics.cs.cmu.edu/projects/im2gps/"><code>Im2GPS</code></a> and <a href="https://arxiv.org/abs/1705.04838"><code>Im2GPS3k</code></a> geolocation literature benchmarks. Can you beat the AI?
"""
)
with gr.Accordion(
label="The demo currently encompasses 116 countries from 6 continents 🌍",
open=False,
):
gr.Code(
json.dumps(countries_per_continent, indent=2, ensure_ascii=False),
label="countries_per_continent.json",
language="json",
interactive=False,
)
with gr.Tab("Image Geolocation Demo"):
with gr.Row():
with gr.Column():
image = gr.Image(
label="Image", type="pil", sources=["upload", "clipboard"], show_fullscreen_button=True
)
predict_btn = gr.Button("Predict")
example_images = get_example_images("kerger-test-images")
# example_images.extend(get_example_images("versus_images"))
gr.Examples(examples=example_images, inputs=image, examples_per_page=24)
with gr.Column():
with gr.Accordion(visible=False) as metadata_block:
map = gr.Plot(label="Locations")
with gr.Group():
continents_label = gr.Label(label="Continents")
country_label = gr.Label(num_top_classes=5, label="Top countries")
predict_btn.click(
predict,
inputs=image,
outputs=[continents_label, country_label, metadata_block, map],
)
with gr.Tab("Versus Mode"):
versus_state = gr.State(value=INITAL_VERSUS_STATE)
with gr.Row():
with gr.Column():
versus_image = gr.Image(INITAL_VERSUS_STATE["image"], interactive=False, show_download_button=False, show_share_button=False, show_fullscreen_button=True)
continent_selection = gr.Radio(
continents,
label="Continents",
info="Where was this image taken? (1 Point)",
)
country_selection = (
gr.Dropdown(
countries,
label="Countries",
info="Can you guess the exact country? (2 Points)",
),
)
with gr.Row():
next_img_btn = gr.Button("Try new image")
versus_btn = gr.Button("Submit guess")
with gr.Column():
versus_output = gr.Markdown()
# with gr.Accordion("View Map", open=False):
map = gr.Plot(label="Locations")
with gr.Accordion("Full Model Output", open=False):
with gr.Group():
continents_label = gr.Label(label="Continents")
country_label = gr.Label(
num_top_classes=5, label="Top countries"
)
next_img_btn.click(
next_versus_image,
inputs=[versus_state],
outputs=[
versus_image,
versus_state,
continent_selection,
country_selection[0],
],
)
versus_btn.click(
versus_mode_inputs,
inputs=[
versus_image,
continent_selection,
country_selection[0],
versus_state,
],
outputs=[versus_output, continents_label, country_label, map, versus_state],
)
if __name__ == "__main__":
demo.launch(show_api=False)