File size: 973 Bytes
bdff6f4 84b4a40 bdff6f4 0d754b8 bdff6f4 48efa13 84b4a40 bdff6f4 4789dac bdff6f4 84b4a40 bdff6f4 c53e284 931c04e f895a0a b2d7a75 0a7aeac cbf3da8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/app.ipynb.
# %% auto 0
__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image']
from fastai.vision.all import *
import gradio as gr
from pathlib import Path
project_dir = Path(__file__).parent
def is_cat(x) -> bool:
return x[0].isupper()
learn = load_learner("model.pkl")
categories = ("Dog", "Cat")
def classify_image(img):
img = PILImage.create(img)
_, _, probs = learn.predict(img)
return dict(zip(categories, [float(p) for p in probs]))
image = gr.inputs.Image(shape=(192, 192))
label = gr.outputs.Label()
examples = str((project_dir / "examples").absolute())
print(examples)
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label,
title = "Dog/Cat Classifier",
description = "A dog/cat classifier.",
examples=examples,
interpretation="default")
intf.launch()
|