# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/app.ipynb. # %% auto 0 __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image'] from fastai.vision.all import * import gradio as gr from pathlib import Path project_dir = Path(__file__).parent def is_cat(x) -> bool: return x[0].isupper() learn = load_learner("model.pkl") categories = ("Dog", "Cat") def classify_image(img): img = PILImage.create(img) _, _, probs = learn.predict(img) return dict(zip(categories, [float(p) for p in probs])) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = str((project_dir / "examples").absolute()) print(examples) intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, title = "Dog/Cat Classifier", description = "A dog/cat classifier.", examples=examples, interpretation="default") intf.launch()