Spaces:
Runtime error
Runtime error
Commit
·
dd0abe0
1
Parent(s):
8c18fd5
Create module_q.py
Browse files- module_q.py +87 -0
module_q.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import List, Tuple
|
3 |
+
from langchain import PromptTemplate, LLMChain
|
4 |
+
from langchain.document_loaders import TextLoader
|
5 |
+
from langchain.embeddings import LlamaCppEmbeddings
|
6 |
+
from langchain.llms import GPT4All
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.vectorstores.faiss import FAISS
|
9 |
+
from pydantic import BaseModel, Field
|
10 |
+
from langchain.chains import ConversationalRetrievalChain
|
11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
+
from langchain.llms import LlamaCpp
|
13 |
+
import os.path
|
14 |
+
|
15 |
+
|
16 |
+
import langchain
|
17 |
+
from langchain.cache import InMemoryCache
|
18 |
+
langchain.llm_cache = InMemoryCache()
|
19 |
+
|
20 |
+
# Constants
|
21 |
+
local_path = "./models/gpt4all-converted.bin" #GPT4 module 1
|
22 |
+
#local_path = "./models/ggml-gpt4all-l13b-snoozy.bin"
|
23 |
+
|
24 |
+
|
25 |
+
model_path = "./models/ggml-model-q4_0.bin" #1st Embeddings
|
26 |
+
#model_path = './models/ggjt-model.bin' #2st Embedding
|
27 |
+
text_path = "./docs/acapglobal.txt"
|
28 |
+
index_path = "./acapglobal_index"
|
29 |
+
|
30 |
+
|
31 |
+
# Functions
|
32 |
+
def initialize_embeddings() -> LlamaCppEmbeddings:
|
33 |
+
return LlamaCppEmbeddings(model_path=model_path)
|
34 |
+
|
35 |
+
def load_documents() -> List:
|
36 |
+
loader = TextLoader(text_path,encoding="utf-8")
|
37 |
+
return loader.load()
|
38 |
+
|
39 |
+
def split_chunks(sources: List) -> List:
|
40 |
+
chunks = []
|
41 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
|
42 |
+
for chunk in splitter.split_documents(sources):
|
43 |
+
chunks.append(chunk)
|
44 |
+
return chunks
|
45 |
+
|
46 |
+
def generate_index(chunks: List, embeddings: LlamaCppEmbeddings) -> FAISS:
|
47 |
+
texts = [doc.page_content for doc in chunks]
|
48 |
+
metadatas = [doc.metadata for doc in chunks]
|
49 |
+
return FAISS.from_texts(texts, embeddings, metadatas=metadatas)
|
50 |
+
|
51 |
+
|
52 |
+
# Main execution
|
53 |
+
llm = GPT4All(model=local_path, n_ctx=512, verbose=True,cache=True,embedding=True)
|
54 |
+
print('llm GPT4All set.')
|
55 |
+
embeddings = initialize_embeddings()
|
56 |
+
|
57 |
+
|
58 |
+
# when refresh document
|
59 |
+
#
|
60 |
+
|
61 |
+
# print('initialize_embeddings.')
|
62 |
+
# sources = load_documents()
|
63 |
+
# print('load_documents.')
|
64 |
+
# chunks = split_chunks(sources)
|
65 |
+
# print('split_chunks')
|
66 |
+
# vectorstore = generate_index(chunks, embeddings)
|
67 |
+
# print('generate_index')
|
68 |
+
# vectorstore.save_local("acapglobal_index")
|
69 |
+
# print('vectorstore: save_local')
|
70 |
+
|
71 |
+
#
|
72 |
+
# End When refresh document
|
73 |
+
|
74 |
+
|
75 |
+
chat_history = []
|
76 |
+
#index = FAISS.load_local(index_path, embeddings)
|
77 |
+
index = FAISS.load_local(index_path, embeddings)
|
78 |
+
|
79 |
+
qa = ConversationalRetrievalChain.from_llm(llm, index.as_retriever(), max_tokens_limit=400)
|
80 |
+
|
81 |
+
def search_query_data(s_query):
|
82 |
+
print("search_query:")
|
83 |
+
print( s_query)
|
84 |
+
retrieval=qa({"question": s_query, "chat_history": chat_history})
|
85 |
+
return retrieval
|
86 |
+
|
87 |
+
|