Spaces:
Runtime error
Runtime error
File size: 6,033 Bytes
6eff5e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import os
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer
import pickle
from input_format import *
from score import *
# load document scoring model
pretrained_model = 'allenai/specter'
tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
doc_model = AutoModel.from_pretrained(pretrained_model)
# load sentence model
sent_model = SentenceTransformer('sentence-transformers/gtr-t5-base')
def get_similar_paper(
abstract_text_input,
pdf_file_input,
author_id_input,
num_papers_show=10
):
input_sentences = sent_tokenize(abstract_text_input)
pickle.dump(input_sentences, open('tmp_input_sents.pkl', 'wb'))
# TODO handle pdf file input
if pdf_file_input is not None:
name = None
papers = []
raise ValueError('Use submission abstract instead.')
else:
# Get author papers from id
name, papers = get_text_from_author_id(author_id_input)
# Compute Doc-level affinity scores for the Papers
titles, abstracts, doc_scores = compute_overall_score(
doc_model,
tokenizer,
abstract_text_input,
papers,
batch=30
)
tmp = {
'titles': titles,
'abstracts': abstracts,
'doc_scores': doc_scores
}
pickle.dump(tmp, open('tmp_paperinfo.pkl', 'wb'))
# Select top K choices of papers to show
titles = titles[:num_papers_show]
abstracts = abstracts[:num_papers_show]
doc_scores = doc_scores[:num_papers_show]
return titles[0], abstracts[0], doc_scores[0], gr.update(choices=input_sentences, interactive=True), gr.update(visible=True)
def get_highlights(
abstract_text_input,
pdf_file_input,
abstract,
K=2
):
# Compute sent-level and phrase-level affinity scores for each papers
sent_ids, sent_scores, info = get_highlight_info(
sent_model,
abstract_text_input,
abstract,
K=K
)
input_sentences = sent_tokenize(abstract_text_input)
num_sents = len(input_sentences)
word_scores = dict()
# different highlights for each input sentences
for i in range(num_sents):
word_scores[str(i)] = {
"original": abstract,
"interpretation": list(zip(info['all_words'], info[i]['scores']))
}
tmp = {
'source_sentences': input_sentences,
'highlight': word_scores
}
pickle.dump(tmp, open('highlight_info.pkl', 'wb'))
# update the visibility of radio choices
return gr.update(visible=True)
def update_name(author_id_input):
# update the name of the author based on the id input
name, _ = get_text_from_author_id(author_id_input)
return gr.update(value=name)
def change_output_highlight(source_sent_choice):
# change the output highlight based on the sentence selected from the submission
if os.path.exists('highlight_info.pkl'):
tmp = pickle.load(open('highlight_info.pkl', 'rb'))
source_sents = tmp['source_sentences']
highlights = tmp['highlight']
for i, s in enumerate(source_sents):
print('changing highlight!')
if source_sent_choice == s:
return highlights[str(i)]
else:
return
with gr.Blocks() as demo:
### INPUT
with gr.Row() as input_row:
with gr.Column():
abstract_text_input = gr.Textbox(label='Submission Abstract')
with gr.Column():
pdf_file_input = gr.File(label='OR upload a submission PDF File')
with gr.Column():
with gr.Row():
author_id_input = gr.Textbox(label='Reviewer ID (Semantic Scholar)')
with gr.Row():
name = gr.Textbox(label='Confirm Reviewer Name', interactive=False)
author_id_input.change(fn=update_name, inputs=author_id_input, outputs=name)
with gr.Row():
compute_btn = gr.Button('Search Similar Papers from the Reviewer')
# with gr.Row(visible=False) as reviewer_name_info:
# name = gr.Textbox(label='Reveiwer Author Name')
# with gr.Row():
# with gr.Tabs():
# for tt in range(num_papers_show):
# with gr.TabItem('Paper %d'%(tt+1)):
# TODO handle multiple papers
### PAPER INFORMATION
with gr.Row():
with gr.Column(scale=3):
paper_title = gr.Textbox(label='Title', interactive=False)
with gr.Column(scale=1):
affinity= gr.Number(label='Affinity', interactive=False, value=0)
with gr.Row():
paper_abstract = gr.Textbox(label='Abstract', interactive=False)
with gr.Row(visible=False) as explain_button_row:
explain_btn = gr.Button('Show Relevant Parts from Selected Paper')
### RELEVANT PARTS (HIGHLIGHTS)
with gr.Row():
with gr.Column(scale=2): # text from submission
source_sentences = gr.Radio(
choices=[],
visible=False,
label='Sentences from Submission Abstract',
)
with gr.Column(scale=3): # highlighted text from paper
highlight = gr.components.Interpretation(paper_abstract)
compute_btn.click(
fn=get_similar_paper,
inputs=[
abstract_text_input,
pdf_file_input,
author_id_input
],
outputs=[
paper_title,
paper_abstract,
affinity,
source_sentences,
explain_button_row
]
)
explain_btn.click(
fn=get_highlights,
inputs=[
abstract_text_input,
pdf_file_input,
paper_abstract
],
outputs=source_sentences
)
source_sentences.change(
fn=change_output_highlight,
inputs=source_sentences,
outputs=highlight
)
if __name__ == "__main__":
demo.launch() |