Spaces:
Runtime error
Runtime error
score precision consistent. adding separation line in between results. made phrase matching colors lighter for better readability.
Browse files
app.py
CHANGED
@@ -26,7 +26,8 @@ sent_model.to(device)
|
|
26 |
def get_similar_paper(
|
27 |
abstract_text_input,
|
28 |
author_id_input,
|
29 |
-
results={} # variable will be updated and returned
|
|
|
30 |
):
|
31 |
num_papers_show = 10 # number of top papers to show from the reviewer
|
32 |
print('retrieving similar papers...')
|
@@ -34,10 +35,12 @@ def get_similar_paper(
|
|
34 |
input_sentences = sent_tokenize(abstract_text_input)
|
35 |
|
36 |
# Get author papers from id
|
|
|
37 |
name, papers = get_text_from_author_id(author_id_input)
|
38 |
|
39 |
# Compute Doc-level affinity scores for the Papers
|
40 |
-
print('computing document scores...')
|
|
|
41 |
# TODO detect duplicate papers?
|
42 |
titles, abstracts, paper_urls, doc_scores = compute_document_score(
|
43 |
doc_model,
|
@@ -64,12 +67,12 @@ def get_similar_paper(
|
|
64 |
end = time.time()
|
65 |
print('paper retrieval complete in [%0.2f] seconds'%(end - start))
|
66 |
|
|
|
67 |
print('obtaining highlights..')
|
68 |
start = time.time()
|
69 |
input_sentences = sent_tokenize(abstract_text_input)
|
70 |
num_sents = len(input_sentences)
|
71 |
|
72 |
-
summary_info = dict() # elements to visualize upfront
|
73 |
for aa, (tt, ab, ds) in enumerate(zip(titles, abstracts, doc_scores)):
|
74 |
# Compute sent-level and phrase-level affinity scores for each papers
|
75 |
sent_ids, sent_scores, info, top_pairs_info = get_highlight_info(
|
@@ -90,7 +93,7 @@ def get_similar_paper(
|
|
90 |
results[display_title[aa]] = {
|
91 |
'title': tt,
|
92 |
'abstract': ab,
|
93 |
-
'doc_score': ds,
|
94 |
'source_sentences': input_sentences,
|
95 |
'highlight': word_scores,
|
96 |
'top_pairs': top_pairs_info
|
@@ -112,15 +115,14 @@ def get_similar_paper(
|
|
112 |
top_num_info_show = 2 # number of sentence pairs from each paper to show upfront
|
113 |
summary_out = []
|
114 |
for i in range(top_papers_show):
|
115 |
-
# TODO keep score precision consistent
|
116 |
out_tmp = [
|
117 |
gr.update(value=titles[i], visible=True),
|
118 |
-
gr.update(value=
|
119 |
]
|
120 |
tp = results[display_title[i]]['top_pairs']
|
121 |
for j in range(top_num_info_show):
|
122 |
out_tmp += [
|
123 |
-
gr.update(value=
|
124 |
tp[j]['query']['original'],
|
125 |
tp[j]['query'],
|
126 |
tp[j]['candidate']['original'],
|
@@ -131,6 +133,8 @@ def get_similar_paper(
|
|
131 |
# add updates to the show more button
|
132 |
out = out + summary_out + [gr.update(visible=True)] # make show more button visible
|
133 |
assert(len(out) == (top_num_info_show * 5 + 2) * top_papers_show + 3)
|
|
|
|
|
134 |
|
135 |
# add the search results to pass on to the Gradio State varaible
|
136 |
out += [results]
|
@@ -194,7 +198,7 @@ Below we describe how to use the tool. Also feel free to check out the [video]()
|
|
194 |
##### Relevant Parts from Top Papers
|
195 |
- You will be shown three most relevant papers from the reviewer with high **affinity scores** (ranging from 0 to 1) computed using text representations from a [language model](https://github.com/allenai/specter/tree/master/specter).
|
196 |
- For each of the paper, we present relevant pieces of information from the submission and the paper: two pairs of (sentence relevance score, sentence from the submission abstract, sentnece from the paper abstract)
|
197 |
-
- **<span style="color:black;background-color:#
|
198 |
##### More Relevant Parts
|
199 |
- If the information above is not enough, click `See more relevant parts from other papers` button.
|
200 |
- You will see a list top 10 similar papers along with the affinity scores for each.
|
@@ -203,7 +207,7 @@ Below we describe how to use the tool. Also feel free to check out the [video]()
|
|
203 |
- On the left, you will see individual sentences from the submission abstract to select from.
|
204 |
- On the right, you will see the abstract of the selected paper, with **highlights** incidating relevant parts to the selected sentence.
|
205 |
- **<span style="color:black;background-color:#DB7262;">Red highlights</span>**: sentences with high semantic similarity to the selected sentence.
|
206 |
-
- **<span style="color:black;background-color:#
|
207 |
- To see relevant parts in a different paper from the reviewer, select the new paper.
|
208 |
-------
|
209 |
"""
|
@@ -220,21 +224,25 @@ Below we describe how to use the tool. Also feel free to check out the [video]()
|
|
220 |
name = gr.Textbox(label='Confirm Reviewer Name', interactive=False)
|
221 |
author_id_input.change(fn=update_name, inputs=author_id_input, outputs=name)
|
222 |
with gr.Row():
|
223 |
-
compute_btn = gr.Button('What Makes This a Good Match?')
|
|
|
|
|
|
|
|
|
224 |
|
225 |
### OVERVIEW
|
226 |
# Paper title, score, and top-ranking sentence pairs -- two sentence pairs per paper, three papers
|
227 |
## ONE BLOCK OF INFO FOR A SINGLE PAPER
|
228 |
## PAPER1
|
229 |
-
# TODO link to
|
230 |
with gr.Row():
|
231 |
with gr.Column(scale=3):
|
232 |
paper_title1 = gr.Textbox(label="From the reviewer's paper:", interactive=False, visible=False)
|
233 |
with gr.Column(scale=1):
|
234 |
-
affinity1 = gr.
|
235 |
with gr.Row() as rel1_1:
|
236 |
with gr.Column(scale=1):
|
237 |
-
sent_pair_score1_1 = gr.
|
238 |
with gr.Column(scale=4):
|
239 |
sent_pair_source1_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
240 |
sent_pair_source1_1_hl = gr.components.Interpretation(sent_pair_source1_1)
|
@@ -243,27 +251,28 @@ Below we describe how to use the tool. Also feel free to check out the [video]()
|
|
243 |
sent_pair_candidate1_1_hl = gr.components.Interpretation(sent_pair_candidate1_1)
|
244 |
with gr.Row() as rel1_2:
|
245 |
with gr.Column(scale=1):
|
246 |
-
sent_pair_score1_2 = gr.
|
247 |
with gr.Column(scale=4):
|
248 |
sent_pair_source1_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
249 |
sent_pair_source1_2_hl = gr.components.Interpretation(sent_pair_source1_2)
|
250 |
with gr.Column(scale=4):
|
251 |
sent_pair_candidate1_2 = gr.Textbox(label='Sentence from Paper', visible=False)
|
252 |
sent_pair_candidate1_2_hl = gr.components.Interpretation(sent_pair_candidate1_2)
|
253 |
-
|
254 |
-
gr.
|
255 |
-
|
256 |
-
|
|
|
257 |
|
258 |
## PAPER 2
|
259 |
with gr.Row():
|
260 |
with gr.Column(scale=3):
|
261 |
paper_title2 = gr.Textbox(label="From the reviewer's paper:", interactive=False, visible=False)
|
262 |
with gr.Column(scale=1):
|
263 |
-
affinity2 = gr.
|
264 |
with gr.Row() as rel2_1:
|
265 |
with gr.Column(scale=1):
|
266 |
-
sent_pair_score2_1 = gr.
|
267 |
with gr.Column(scale=4):
|
268 |
sent_pair_source2_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
269 |
sent_pair_source2_1_hl = gr.components.Interpretation(sent_pair_source2_1)
|
@@ -272,7 +281,7 @@ Below we describe how to use the tool. Also feel free to check out the [video]()
|
|
272 |
sent_pair_candidate2_1_hl = gr.components.Interpretation(sent_pair_candidate2_1)
|
273 |
with gr.Row() as rel2_2:
|
274 |
with gr.Column(scale=1):
|
275 |
-
sent_pair_score2_2 = gr.
|
276 |
with gr.Column(scale=4):
|
277 |
sent_pair_source2_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
278 |
sent_pair_source2_2_hl = gr.components.Interpretation(sent_pair_source2_2)
|
@@ -280,19 +289,20 @@ Below we describe how to use the tool. Also feel free to check out the [video]()
|
|
280 |
sent_pair_candidate2_2 = gr.Textbox(label='Sentence from Paper', visible=False)
|
281 |
sent_pair_candidate2_2_hl = gr.components.Interpretation(sent_pair_candidate2_2)
|
282 |
|
283 |
-
gr.
|
284 |
-
|
285 |
-
|
|
|
286 |
|
287 |
## PAPER 3
|
288 |
with gr.Row():
|
289 |
with gr.Column(scale=3):
|
290 |
paper_title3 = gr.Textbox(label="From the reviewer's paper:", interactive=False, visible=False)
|
291 |
with gr.Column(scale=1):
|
292 |
-
affinity3 = gr.
|
293 |
with gr.Row() as rel3_1:
|
294 |
with gr.Column(scale=1):
|
295 |
-
sent_pair_score3_1 = gr.
|
296 |
with gr.Column(scale=4):
|
297 |
sent_pair_source3_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
298 |
sent_pair_source3_1_hl = gr.components.Interpretation(sent_pair_source3_1)
|
@@ -301,7 +311,7 @@ Below we describe how to use the tool. Also feel free to check out the [video]()
|
|
301 |
sent_pair_candidate3_1_hl = gr.components.Interpretation(sent_pair_candidate3_1)
|
302 |
with gr.Row() as rel3_2:
|
303 |
with gr.Column(scale=1):
|
304 |
-
sent_pair_score3_2 = gr.
|
305 |
with gr.Column(scale=4):
|
306 |
sent_pair_source3_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
307 |
sent_pair_source3_2_hl = gr.components.Interpretation(sent_pair_source3_2)
|
@@ -328,7 +338,7 @@ Below we describe how to use the tool. Also feel free to check out the [video]()
|
|
328 |
with gr.Column(scale=3):
|
329 |
paper_title = gr.Textbox(label='Title', interactive=False)
|
330 |
with gr.Column(scale=1):
|
331 |
-
affinity= gr.
|
332 |
with gr.Row():
|
333 |
paper_abstract = gr.Textbox(label='Abstract', interactive=False, visible=False)
|
334 |
|
@@ -393,7 +403,9 @@ Below we describe how to use the tool. Also feel free to check out the [video]()
|
|
393 |
sent_pair_candidate3_2,
|
394 |
sent_pair_candidate3_2_hl,
|
395 |
see_more_rel_btn,
|
396 |
-
|
|
|
|
|
397 |
]
|
398 |
)
|
399 |
|
|
|
26 |
def get_similar_paper(
|
27 |
abstract_text_input,
|
28 |
author_id_input,
|
29 |
+
results={}, # this state variable will be updated and returned
|
30 |
+
# progress=gr.Progress(track_tqdm=True)
|
31 |
):
|
32 |
num_papers_show = 10 # number of top papers to show from the reviewer
|
33 |
print('retrieving similar papers...')
|
|
|
35 |
input_sentences = sent_tokenize(abstract_text_input)
|
36 |
|
37 |
# Get author papers from id
|
38 |
+
#progress(0.1, desc="Retrieving reviewer papers ...")
|
39 |
name, papers = get_text_from_author_id(author_id_input)
|
40 |
|
41 |
# Compute Doc-level affinity scores for the Papers
|
42 |
+
# print('computing document scores...')
|
43 |
+
#progress(0.5, desc="Computing document scores...")
|
44 |
# TODO detect duplicate papers?
|
45 |
titles, abstracts, paper_urls, doc_scores = compute_document_score(
|
46 |
doc_model,
|
|
|
67 |
end = time.time()
|
68 |
print('paper retrieval complete in [%0.2f] seconds'%(end - start))
|
69 |
|
70 |
+
#progress(0.4, desc="Obtaining relevant information from the papers...")
|
71 |
print('obtaining highlights..')
|
72 |
start = time.time()
|
73 |
input_sentences = sent_tokenize(abstract_text_input)
|
74 |
num_sents = len(input_sentences)
|
75 |
|
|
|
76 |
for aa, (tt, ab, ds) in enumerate(zip(titles, abstracts, doc_scores)):
|
77 |
# Compute sent-level and phrase-level affinity scores for each papers
|
78 |
sent_ids, sent_scores, info, top_pairs_info = get_highlight_info(
|
|
|
93 |
results[display_title[aa]] = {
|
94 |
'title': tt,
|
95 |
'abstract': ab,
|
96 |
+
'doc_score': '%0.3f'%ds,
|
97 |
'source_sentences': input_sentences,
|
98 |
'highlight': word_scores,
|
99 |
'top_pairs': top_pairs_info
|
|
|
115 |
top_num_info_show = 2 # number of sentence pairs from each paper to show upfront
|
116 |
summary_out = []
|
117 |
for i in range(top_papers_show):
|
|
|
118 |
out_tmp = [
|
119 |
gr.update(value=titles[i], visible=True),
|
120 |
+
gr.update(value='%0.3f'%doc_scores[i], visible=True) # document affinity
|
121 |
]
|
122 |
tp = results[display_title[i]]['top_pairs']
|
123 |
for j in range(top_num_info_show):
|
124 |
out_tmp += [
|
125 |
+
gr.update(value='%0.3f'%tp[j]['score'], visible=True), # sentence relevance
|
126 |
tp[j]['query']['original'],
|
127 |
tp[j]['query'],
|
128 |
tp[j]['candidate']['original'],
|
|
|
133 |
# add updates to the show more button
|
134 |
out = out + summary_out + [gr.update(visible=True)] # make show more button visible
|
135 |
assert(len(out) == (top_num_info_show * 5 + 2) * top_papers_show + 3)
|
136 |
+
|
137 |
+
out += [gr.update(visible=True), gr.update(visible=True)] # demarcation line between results
|
138 |
|
139 |
# add the search results to pass on to the Gradio State varaible
|
140 |
out += [results]
|
|
|
198 |
##### Relevant Parts from Top Papers
|
199 |
- You will be shown three most relevant papers from the reviewer with high **affinity scores** (ranging from 0 to 1) computed using text representations from a [language model](https://github.com/allenai/specter/tree/master/specter).
|
200 |
- For each of the paper, we present relevant pieces of information from the submission and the paper: two pairs of (sentence relevance score, sentence from the submission abstract, sentnece from the paper abstract)
|
201 |
+
- **<span style="color:black;background-color:#65B5E3;">Blue highlights</span>** inidicate phrases that are included in both sentences.
|
202 |
##### More Relevant Parts
|
203 |
- If the information above is not enough, click `See more relevant parts from other papers` button.
|
204 |
- You will see a list top 10 similar papers along with the affinity scores for each.
|
|
|
207 |
- On the left, you will see individual sentences from the submission abstract to select from.
|
208 |
- On the right, you will see the abstract of the selected paper, with **highlights** incidating relevant parts to the selected sentence.
|
209 |
- **<span style="color:black;background-color:#DB7262;">Red highlights</span>**: sentences with high semantic similarity to the selected sentence.
|
210 |
+
- **<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases included in the selected sentence.
|
211 |
- To see relevant parts in a different paper from the reviewer, select the new paper.
|
212 |
-------
|
213 |
"""
|
|
|
224 |
name = gr.Textbox(label='Confirm Reviewer Name', interactive=False)
|
225 |
author_id_input.change(fn=update_name, inputs=author_id_input, outputs=name)
|
226 |
with gr.Row():
|
227 |
+
compute_btn = gr.Button('What Makes This a Good Match?')
|
228 |
+
|
229 |
+
# TODO indicate the progress when pressed
|
230 |
+
with gr.Row():
|
231 |
+
search_status = gr.Textbox(label='Search Status', interactive=False, visible=True)
|
232 |
|
233 |
### OVERVIEW
|
234 |
# Paper title, score, and top-ranking sentence pairs -- two sentence pairs per paper, three papers
|
235 |
## ONE BLOCK OF INFO FOR A SINGLE PAPER
|
236 |
## PAPER1
|
237 |
+
# TODO add link to each paper
|
238 |
with gr.Row():
|
239 |
with gr.Column(scale=3):
|
240 |
paper_title1 = gr.Textbox(label="From the reviewer's paper:", interactive=False, visible=False)
|
241 |
with gr.Column(scale=1):
|
242 |
+
affinity1 = gr.Textbox(label='Affinity', interactive=False, value='', visible=False)
|
243 |
with gr.Row() as rel1_1:
|
244 |
with gr.Column(scale=1):
|
245 |
+
sent_pair_score1_1 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False)
|
246 |
with gr.Column(scale=4):
|
247 |
sent_pair_source1_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
248 |
sent_pair_source1_1_hl = gr.components.Interpretation(sent_pair_source1_1)
|
|
|
251 |
sent_pair_candidate1_1_hl = gr.components.Interpretation(sent_pair_candidate1_1)
|
252 |
with gr.Row() as rel1_2:
|
253 |
with gr.Column(scale=1):
|
254 |
+
sent_pair_score1_2 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False)
|
255 |
with gr.Column(scale=4):
|
256 |
sent_pair_source1_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
257 |
sent_pair_source1_2_hl = gr.components.Interpretation(sent_pair_source1_2)
|
258 |
with gr.Column(scale=4):
|
259 |
sent_pair_candidate1_2 = gr.Textbox(label='Sentence from Paper', visible=False)
|
260 |
sent_pair_candidate1_2_hl = gr.components.Interpretation(sent_pair_candidate1_2)
|
261 |
+
|
262 |
+
with gr.Row(visible=False) as demarc1:
|
263 |
+
gr.Markdown(
|
264 |
+
"""---"""
|
265 |
+
)
|
266 |
|
267 |
## PAPER 2
|
268 |
with gr.Row():
|
269 |
with gr.Column(scale=3):
|
270 |
paper_title2 = gr.Textbox(label="From the reviewer's paper:", interactive=False, visible=False)
|
271 |
with gr.Column(scale=1):
|
272 |
+
affinity2 = gr.Textbox(label='Affinity', interactive=False, value='', visible=False)
|
273 |
with gr.Row() as rel2_1:
|
274 |
with gr.Column(scale=1):
|
275 |
+
sent_pair_score2_1 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False)
|
276 |
with gr.Column(scale=4):
|
277 |
sent_pair_source2_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
278 |
sent_pair_source2_1_hl = gr.components.Interpretation(sent_pair_source2_1)
|
|
|
281 |
sent_pair_candidate2_1_hl = gr.components.Interpretation(sent_pair_candidate2_1)
|
282 |
with gr.Row() as rel2_2:
|
283 |
with gr.Column(scale=1):
|
284 |
+
sent_pair_score2_2 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False)
|
285 |
with gr.Column(scale=4):
|
286 |
sent_pair_source2_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
287 |
sent_pair_source2_2_hl = gr.components.Interpretation(sent_pair_source2_2)
|
|
|
289 |
sent_pair_candidate2_2 = gr.Textbox(label='Sentence from Paper', visible=False)
|
290 |
sent_pair_candidate2_2_hl = gr.components.Interpretation(sent_pair_candidate2_2)
|
291 |
|
292 |
+
with gr.Row(visible=False) as demarc2:
|
293 |
+
gr.Markdown(
|
294 |
+
"""---"""
|
295 |
+
)
|
296 |
|
297 |
## PAPER 3
|
298 |
with gr.Row():
|
299 |
with gr.Column(scale=3):
|
300 |
paper_title3 = gr.Textbox(label="From the reviewer's paper:", interactive=False, visible=False)
|
301 |
with gr.Column(scale=1):
|
302 |
+
affinity3 = gr.Textbox(label='Affinity', interactive=False, value='', visible=False)
|
303 |
with gr.Row() as rel3_1:
|
304 |
with gr.Column(scale=1):
|
305 |
+
sent_pair_score3_1 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False)
|
306 |
with gr.Column(scale=4):
|
307 |
sent_pair_source3_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
308 |
sent_pair_source3_1_hl = gr.components.Interpretation(sent_pair_source3_1)
|
|
|
311 |
sent_pair_candidate3_1_hl = gr.components.Interpretation(sent_pair_candidate3_1)
|
312 |
with gr.Row() as rel3_2:
|
313 |
with gr.Column(scale=1):
|
314 |
+
sent_pair_score3_2 = gr.Textbox(label='Sentence Relevance', interactive=False, value='', visible=False)
|
315 |
with gr.Column(scale=4):
|
316 |
sent_pair_source3_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
317 |
sent_pair_source3_2_hl = gr.components.Interpretation(sent_pair_source3_2)
|
|
|
338 |
with gr.Column(scale=3):
|
339 |
paper_title = gr.Textbox(label='Title', interactive=False)
|
340 |
with gr.Column(scale=1):
|
341 |
+
affinity= gr.Textbox(label='Affinity', interactive=False, value='')
|
342 |
with gr.Row():
|
343 |
paper_abstract = gr.Textbox(label='Abstract', interactive=False, visible=False)
|
344 |
|
|
|
403 |
sent_pair_candidate3_2,
|
404 |
sent_pair_candidate3_2_hl,
|
405 |
see_more_rel_btn,
|
406 |
+
demarc1,
|
407 |
+
demarc2,
|
408 |
+
info,
|
409 |
]
|
410 |
)
|
411 |
|
score.py
CHANGED
@@ -112,7 +112,7 @@ def mark_words(query_sents, words, all_words, sent_start_id, sent_ids, sent_scor
|
|
112 |
get_match_phrase(query_words, all_words[sent_start_id[sid]:])
|
113 |
|
114 |
# update selected phrase scores (-1 meaning a different color in gradio)
|
115 |
-
word_scores[is_selected_sent+is_selected_phrase==2] = -
|
116 |
|
117 |
output[i] = {
|
118 |
'is_selected_sent': is_selected_sent,
|
@@ -154,8 +154,9 @@ def get_highlight_info(model, text1, text2, K=None):
|
|
154 |
q_words = word_tokenize(q_sent)
|
155 |
c_words = word_tokenize(c_sent)
|
156 |
mask1, mask2 = get_match_phrase(q_words, c_words)
|
157 |
-
|
158 |
-
|
|
|
159 |
assert(len(mask1) == len(q_words) and len(mask2) == len(c_words))
|
160 |
top_pairs_info[count] = {
|
161 |
'query': {
|
|
|
112 |
get_match_phrase(query_words, all_words[sent_start_id[sid]:])
|
113 |
|
114 |
# update selected phrase scores (-1 meaning a different color in gradio)
|
115 |
+
word_scores[is_selected_sent+is_selected_phrase==2] = -0.5
|
116 |
|
117 |
output[i] = {
|
118 |
'is_selected_sent': is_selected_sent,
|
|
|
154 |
q_words = word_tokenize(q_sent)
|
155 |
c_words = word_tokenize(c_sent)
|
156 |
mask1, mask2 = get_match_phrase(q_words, c_words)
|
157 |
+
sc = 0.5
|
158 |
+
mask1 *= -sc # mark matching phrases as blue (-1: darkest)
|
159 |
+
mask2 *= -sc # mark matching phrases as blue
|
160 |
assert(len(mask1) == len(q_words) and len(mask2) == len(c_words))
|
161 |
top_pairs_info[count] = {
|
162 |
'query': {
|