jspr commited on
Commit
ac3b3f0
·
1 Parent(s): f71f2e5

Upload 11 files

Browse files
Files changed (12) hide show
  1. .gitattributes +1 -0
  2. README.md +32 -12
  3. app.py +144 -0
  4. arxiv.py +55 -0
  5. chain.py +128 -0
  6. ingest.py +99 -0
  7. ingest.sh +6 -0
  8. ingest_examples.py +219 -0
  9. ingest_faiss.py +41 -0
  10. paper +3 -0
  11. qa.py +26 -0
  12. requirements.txt +10 -0
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ paper filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,12 +1,32 @@
1
- ---
2
- title: Paperchat
3
- emoji: 💩
4
- colorFrom: indigo
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 3.16.2
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PaperChat
2
+
3
+ This repo is an implementation of a chatbot specifically focused on question answering over the [LangChain documentation](https://langchain.readthedocs.io/en/latest/).
4
+
5
+ ## 🚀 Important Links
6
+
7
+ Website: [chat.langchain.dev](https://chat.langchain.dev)
8
+
9
+ Hugging Face Spage: [huggingface.co/spaces/hwchase17/chat-langchain](https://huggingface.co/spaces/hwchase17/chat-langchain)
10
+
11
+ Blog Post: [blog.langchain.dev/langchain-chat/](https://blog.langchain.dev/langchain-chat/)
12
+
13
+ ## 📚 Technical description
14
+
15
+ There are two components: ingestion and question-answering.
16
+
17
+ Ingestion has the following steps:
18
+
19
+ 1. Pull html from documentation site
20
+ 2. Parse html with BeautifulSoup
21
+ 3. Split documents with LangChain's [TextSplitter](https://langchain.readthedocs.io/en/latest/modules/utils/combine_docs_examples/textsplitter.html)
22
+ 4. Create a vectorstore of embeddings, using LangChain's [vectorstore wrapper](https://langchain.readthedocs.io/en/latest/modules/utils/combine_docs_examples/vectorstores.html) (with OpenAI's embeddings and Weaviate's vectorstore)
23
+
24
+ Question-Answering has the following steps:
25
+
26
+ 1. Given the chat history and new user input, determine what a standalone question would be (using GPT-3)
27
+ 2. Given that standalone question, look up relevant documents from the vectorstore
28
+ 3. Pass the standalone question and relevant documents to GPT-3 to generate a final answer
29
+
30
+ ## 🧠 How to Extend to your documentation
31
+
32
+ Coming soon.
app.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import os
3
+ from langchain.chains import VectorDBQAWithSourcesChain
4
+ import gradio as gr
5
+ import langchain
6
+ import weaviate
7
+ from langchain.vectorstores import Weaviate
8
+ import faiss
9
+ import pickle
10
+ from langchain import OpenAI
11
+ from arxiv import get_paper
12
+ from ingest_faiss import create_vector_store
13
+
14
+ def get_vectorstore(suffix):
15
+ index = faiss.read_index(f"{suffix}/docs.index")
16
+ with open(f"{suffix}/faiss_store.pkl", "rb") as f:
17
+ store = pickle.load(f)
18
+ store.index = index
19
+ return store
20
+
21
+ def set_openai_api_key(api_key, agent):
22
+ if api_key:
23
+ os.environ["OPENAI_API_KEY"] = api_key
24
+ vectorstore = get_vectorstore()
25
+ qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore)
26
+ os.environ["OPENAI_API_KEY"] = ""
27
+ return qa_chain
28
+
29
+ def download_paper_and_embed(paper_arxiv_url, api_key):
30
+ if paper_arxiv_url and api_key:
31
+ paper_text = get_paper(paper_arxiv_url)
32
+ if 'abs' in paper_arxiv_url:
33
+ eprint_url = paper_arxiv_url.replace("https://arxiv.org/abs/", "https://arxiv.org/e-print/")
34
+ elif 'pdf' in paper_arxiv_url:
35
+ eprint_url = paper_arxiv_url.replace("https://arxiv.org/pdf/", "https://arxiv.org/e-print/")
36
+ else:
37
+ raise ValueError("Invalid arXiv URL")
38
+ suffix = 'paper-dir/' + eprint_url.replace("https://arxiv.org/e-print/", "")
39
+ if not os.path.exists(suffix + "/docs.index"):
40
+ create_vector_store(suffix, paper_text)
41
+
42
+ os.environ["OPENAI_API_KEY"] = api_key
43
+ vectorstore = get_vectorstore(suffix)
44
+ qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore)
45
+ os.environ["OPENAI_API_KEY"] = ""
46
+ return qa_chain
47
+
48
+ chain = None
49
+
50
+ def chat(inp, history, paper_arxiv_url, api_key, agent):
51
+ global chain
52
+ if history is None:
53
+ chain = download_paper_and_embed(paper_arxiv_url, api_key)
54
+ history = history or []
55
+ # if agent is None:
56
+ # history.append((inp, "Please paste your OpenAI key to use"))
57
+ # return history, history
58
+ print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
59
+ print("inp: " + inp)
60
+ history = history or []
61
+ agent = chain
62
+ output = agent({"question": inp})
63
+ answer = output["answer"]
64
+ sources = output["sources"]
65
+ history.append((inp, answer))
66
+ history.append(("Sources?", sources))
67
+ print(history)
68
+ return history, history
69
+
70
+ block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
71
+
72
+ with block:
73
+ state = gr.State()
74
+ agent_state = gr.State()
75
+ with gr.Row():
76
+ gr.Markdown("<h3><center>PaperChat</center></h3>")
77
+
78
+ paper_arxiv_url = gr.Textbox(
79
+ placeholder="Paste the URL of the paper about which you want to ask a question",
80
+ show_label=False,
81
+ lines=1,
82
+ type="url",
83
+ )
84
+
85
+ openai_api_key_textbox = gr.Textbox(
86
+ placeholder="Paste your OpenAI API key (sk-...)",
87
+ show_label=False,
88
+ lines=1,
89
+ type="password",
90
+ )
91
+
92
+ # # button to download paper
93
+ # download_paper_button = gr.Button(
94
+ # value="Download paper and make embeddings",
95
+ # variant="secondary",
96
+ # ).click(
97
+ # download_paper_and_embed,
98
+ # inputs=[paper_arxiv_url, openai_api_key_textbox, agent_state],
99
+ # outputs=[agent_state],
100
+ # )
101
+
102
+ chatbot = gr.Chatbot()
103
+
104
+ with gr.Row():
105
+ message = gr.Textbox(
106
+ label="What's your question?",
107
+ placeholder="What's the answer to life, the universe, and everything?",
108
+ lines=1,
109
+ )
110
+ submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
111
+
112
+ # gr.Examples(
113
+ # examples=[
114
+ # "What are agents?",
115
+ # "How do I summarize a long document?",
116
+ # "What types of memory exist?",
117
+ # ],
118
+ # inputs=message,
119
+ # )
120
+
121
+ gr.HTML(
122
+ """This app demonstrates question-answering on any given arxiv paper"""
123
+ )
124
+
125
+ gr.HTML(
126
+ "<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
127
+ )
128
+
129
+ submit.click(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state])
130
+ message.submit(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state])
131
+
132
+ # paper_arxiv_url.change(
133
+ # download_paper_and_embed,
134
+ # inputs=[paper_arxiv_url, agent_state],
135
+ # outputs=[agent_state],
136
+ # )
137
+
138
+ # openai_api_key_textbox.change(
139
+ # set_openai_api_key,
140
+ # inputs=[openai_api_key_textbox, agent_state],
141
+ # outputs=[agent_state],
142
+ # )
143
+
144
+ block.launch(debug=True)
arxiv.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from subprocess import call
3
+ import os
4
+ from pylatexenc.latex2text import LatexNodes2Text
5
+
6
+ def get_paper(paper_url):
7
+ if 'abs' in paper_url:
8
+ eprint_url = paper_url.replace("https://arxiv.org/abs/", "https://arxiv.org/e-print/")
9
+ elif 'pdf' in paper_url:
10
+ eprint_url = paper_url.replace("https://arxiv.org/pdf/", "https://arxiv.org/e-print/")
11
+ else:
12
+ raise ValueError("Invalid arXiv URL")
13
+
14
+ suffix = 'paper-dir/' + eprint_url.replace("https://arxiv.org/e-print/", "")
15
+
16
+ # check if the directory exists
17
+ if os.path.exists(suffix):
18
+ print("Paper already downloaded, skipping download")
19
+ else:
20
+ print("Downloading paper")
21
+ r = requests.get(eprint_url)
22
+
23
+ with open("paper", "wb") as f:
24
+ f.write(r.content)
25
+
26
+ # unzip gzipped tar file to new directory
27
+ call(["mkdir", suffix])
28
+ call(["tar", "-xzf", "paper", "-C", suffix])
29
+
30
+ # get the list of all .tex files in the directory
31
+ tex_files = [f for f in os.listdir(suffix) if f.endswith('.tex')]
32
+ # remove math_commands.tex from tex_files if it exists
33
+ if 'math_commands.tex' in tex_files:
34
+ tex_files.remove('math_commands.tex')
35
+ if len(tex_files) == 1:
36
+ # read the main tex file
37
+ with open(f'{suffix}/{tex_files[0]}', 'r') as f:
38
+ paper_tex = f.read()
39
+ elif len(tex_files) == 0:
40
+ raise ValueError("No .tex files found in the paper")
41
+ else:
42
+ raise ValueError("More than one .tex file found in the paper")
43
+
44
+ # convert latex to text
45
+ paper_text = LatexNodes2Text().latex_to_text(paper_tex)
46
+
47
+ with open(f"{suffix}/main.txt", 'w') as f:
48
+ f.write(paper_text)
49
+
50
+ return paper_text
51
+
52
+ if __name__=="__main__":
53
+ paper_url = "https://arxiv.org/abs/2206.08896"
54
+ paper_text = get_paper(paper_url)
55
+ print(paper_text)
chain.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pathlib
4
+ from typing import Dict, List, Tuple
5
+
6
+ import weaviate
7
+ from langchain import OpenAI, PromptTemplate
8
+ from langchain.chains import LLMChain
9
+ from langchain.chains.base import Chain
10
+ from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
11
+ from langchain.chains.conversation.memory import ConversationBufferMemory
12
+ from langchain.chains.question_answering import load_qa_chain
13
+ from langchain.embeddings import OpenAIEmbeddings
14
+ from langchain.prompts import FewShotPromptTemplate, PromptTemplate
15
+ from langchain.prompts.example_selector import \
16
+ SemanticSimilarityExampleSelector
17
+ from langchain.vectorstores import FAISS, Weaviate
18
+ from pydantic import BaseModel
19
+
20
+
21
+ class CustomChain(Chain, BaseModel):
22
+
23
+ vstore: Weaviate
24
+ chain: BaseCombineDocumentsChain
25
+ key_word_extractor: Chain
26
+
27
+ @property
28
+ def input_keys(self) -> List[str]:
29
+ return ["question"]
30
+
31
+ @property
32
+ def output_keys(self) -> List[str]:
33
+ return ["answer"]
34
+
35
+ def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
36
+ question = inputs["question"]
37
+ chat_history_str = _get_chat_history(inputs["chat_history"])
38
+ if chat_history_str:
39
+ new_question = self.key_word_extractor.run(
40
+ question=question, chat_history=chat_history_str
41
+ )
42
+ else:
43
+ new_question = question
44
+ print(new_question)
45
+ docs = self.vstore.similarity_search(new_question, k=4)
46
+ new_inputs = inputs.copy()
47
+ new_inputs["question"] = new_question
48
+ new_inputs["chat_history"] = chat_history_str
49
+ answer, _ = self.chain.combine_docs(docs, **new_inputs)
50
+ return {"answer": answer}
51
+
52
+
53
+ def get_new_chain1(vectorstore) -> Chain:
54
+ WEAVIATE_URL = os.environ["WEAVIATE_URL"]
55
+ client = weaviate.Client(
56
+ url=WEAVIATE_URL,
57
+ additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]},
58
+ )
59
+
60
+ _eg_template = """## Example:
61
+
62
+ Chat History:
63
+ {chat_history}
64
+ Follow Up Input: {question}
65
+ Standalone question: {answer}"""
66
+ _eg_prompt = PromptTemplate(
67
+ template=_eg_template,
68
+ input_variables=["chat_history", "question", "answer"],
69
+ )
70
+
71
+ _prefix = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You should assume that the question is related to LangChain."""
72
+ _suffix = """## Example:
73
+
74
+ Chat History:
75
+ {chat_history}
76
+ Follow Up Input: {question}
77
+ Standalone question:"""
78
+ eg_store = Weaviate(
79
+ client,
80
+ "Rephrase",
81
+ "content",
82
+ attributes=["question", "answer", "chat_history"],
83
+ )
84
+ example_selector = SemanticSimilarityExampleSelector(vectorstore=eg_store, k=4)
85
+ prompt = FewShotPromptTemplate(
86
+ prefix=_prefix,
87
+ suffix=_suffix,
88
+ example_selector=example_selector,
89
+ example_prompt=_eg_prompt,
90
+ input_variables=["question", "chat_history"],
91
+ )
92
+ llm = OpenAI(temperature=0, model_name="text-davinci-003")
93
+ key_word_extractor = LLMChain(llm=llm, prompt=prompt)
94
+
95
+ EXAMPLE_PROMPT = PromptTemplate(
96
+ template=">Example:\nContent:\n---------\n{page_content}\n----------\nSource: {source}",
97
+ input_variables=["page_content", "source"],
98
+ )
99
+ template = """You are an AI assistant for the open source library LangChain. The documentation is located at https://langchain.readthedocs.io.
100
+ You are given the following extracted parts of a long document and a question. Provide a conversational answer with a hyperlink to the documentation.
101
+ You should only use hyperlinks that are explicitly listed as a source in the context. Do NOT make up a hyperlink that is not listed.
102
+ If the question includes a request for code, provide a code block directly from the documentation.
103
+ If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
104
+ If the question is not about LangChain, politely inform them that you are tuned to only answer questions about LangChain.
105
+ Question: {question}
106
+ =========
107
+ {context}
108
+ =========
109
+ Answer in Markdown:"""
110
+ PROMPT = PromptTemplate(template=template, input_variables=["question", "context"])
111
+ doc_chain = load_qa_chain(
112
+ OpenAI(temperature=0, model_name="text-davinci-003", max_tokens=-1),
113
+ chain_type="stuff",
114
+ prompt=PROMPT,
115
+ document_prompt=EXAMPLE_PROMPT,
116
+ )
117
+ return CustomChain(
118
+ chain=doc_chain, vstore=vectorstore, key_word_extractor=key_word_extractor
119
+ )
120
+
121
+
122
+ def _get_chat_history(chat_history: List[Tuple[str, str]]):
123
+ buffer = ""
124
+ for human_s, ai_s in chat_history:
125
+ human = f"Human: " + human_s
126
+ ai = f"Assistant: " + ai_s
127
+ buffer += "\n" + "\n".join([human, ai])
128
+ return buffer
ingest.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Load html from files, clean up, split, ingest into Weaviate."""
2
+ import os
3
+ from pathlib import Path
4
+
5
+ import weaviate
6
+ from bs4 import BeautifulSoup
7
+ from langchain.text_splitter import CharacterTextSplitter
8
+
9
+ # def clean_data(data):
10
+ # soup = BeautifulSoup(data)
11
+ # text = soup.find_all("main", {"id": "main-content"})[0].get_text()
12
+ # return "\n".join([t for t in text.split("\n") if t])
13
+
14
+ # docs = []
15
+ # metadatas = []
16
+ # for p in Path("langchain.readthedocs.io/en/latest/").rglob("*"):
17
+ # if p.is_dir():
18
+ # continue
19
+ # with open(p) as f:
20
+ # docs.append(clean_data(f.read()))
21
+ # metadatas.append({"source": p})
22
+
23
+ with open('paper-dir/main.txt') as f:
24
+ paper_text = f.read()
25
+
26
+ docs = paper_text.split("§")
27
+ # metadatas is the first word that comes after the section symbol
28
+ metadatas = [doc.split(" ")[0] for doc in docs]
29
+
30
+ text_splitter = CharacterTextSplitter(
31
+ separator="\n",
32
+ chunk_size=1000,
33
+ chunk_overlap=200,
34
+ length_function=len,
35
+ )
36
+
37
+ documents = text_splitter.create_documents(docs, metadatas=metadatas)
38
+
39
+
40
+ WEAVIATE_URL = os.environ["WEAVIATE_URL"]
41
+ client = weaviate.Client(
42
+ url=WEAVIATE_URL,
43
+ additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]},
44
+ )
45
+
46
+ client.schema.delete_class("Paragraph")
47
+ client.schema.get()
48
+ schema = {
49
+ "classes": [
50
+ {
51
+ "class": "Paragraph",
52
+ "description": "A written paragraph",
53
+ "vectorizer": "text2vec-openai",
54
+ "moduleConfig": {
55
+ "text2vec-openai": {
56
+ "model": "ada",
57
+ "modelVersion": "002",
58
+ "type": "text",
59
+ }
60
+ },
61
+ "properties": [
62
+ {
63
+ "dataType": ["text"],
64
+ "description": "The content of the paragraph",
65
+ "moduleConfig": {
66
+ "text2vec-openai": {
67
+ "skip": False,
68
+ "vectorizePropertyName": False,
69
+ }
70
+ },
71
+ "name": "content",
72
+ },
73
+ {
74
+ "dataType": ["text"],
75
+ "description": "The link",
76
+ "moduleConfig": {
77
+ "text2vec-openai": {
78
+ "skip": True,
79
+ "vectorizePropertyName": False,
80
+ }
81
+ },
82
+ "name": "source",
83
+ },
84
+ ],
85
+ },
86
+ ]
87
+ }
88
+
89
+ client.schema.create(schema)
90
+
91
+ with client.batch as batch:
92
+ for text in documents:
93
+ batch.add_data_object(
94
+ {
95
+ "content": text.page_content,
96
+ "source": str(text.metadata["source"])
97
+ },
98
+ "Paragraph",
99
+ )
ingest.sh ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Bash script to ingest data
2
+ # This involves scraping the data from the web and then cleaning up and putting in Weaviate.
3
+ !set -eu
4
+ wget -r -A.html https://langchain.readthedocs.io/en/latest/
5
+ python3 ingest.py
6
+ python3 ingest_examples.py
ingest_examples.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Ingest examples into Weaviate."""
2
+ import os
3
+ from pathlib import Path
4
+
5
+ import weaviate
6
+
7
+ WEAVIATE_URL = os.environ["WEAVIATE_URL"]
8
+ client = weaviate.Client(
9
+ url=WEAVIATE_URL,
10
+ additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]},
11
+ )
12
+
13
+ client.schema.delete_class("Rephrase")
14
+ client.schema.delete_class("QA")
15
+ client.schema.get()
16
+ schema = {
17
+ "classes": [
18
+ {
19
+ "class": "Rephrase",
20
+ "description": "Rephrase Examples",
21
+ "vectorizer": "text2vec-openai",
22
+ "moduleConfig": {
23
+ "text2vec-openai": {
24
+ "model": "ada",
25
+ "modelVersion": "002",
26
+ "type": "text",
27
+ }
28
+ },
29
+ "properties": [
30
+ {
31
+ "dataType": ["text"],
32
+ "moduleConfig": {
33
+ "text2vec-openai": {
34
+ "skip": False,
35
+ "vectorizePropertyName": False,
36
+ }
37
+ },
38
+ "name": "content",
39
+ },
40
+ {
41
+ "dataType": ["text"],
42
+ "description": "The link",
43
+ "moduleConfig": {
44
+ "text2vec-openai": {
45
+ "skip": True,
46
+ "vectorizePropertyName": False,
47
+ }
48
+ },
49
+ "name": "question",
50
+ },
51
+ {
52
+ "dataType": ["text"],
53
+ "description": "The link",
54
+ "moduleConfig": {
55
+ "text2vec-openai": {
56
+ "skip": True,
57
+ "vectorizePropertyName": False,
58
+ }
59
+ },
60
+ "name": "answer",
61
+ },
62
+ {
63
+ "dataType": ["text"],
64
+ "description": "The link",
65
+ "moduleConfig": {
66
+ "text2vec-openai": {
67
+ "skip": True,
68
+ "vectorizePropertyName": False,
69
+ }
70
+ },
71
+ "name": "chat_history",
72
+ },
73
+ ],
74
+ },
75
+ ]
76
+ }
77
+
78
+ client.schema.create(schema)
79
+
80
+ documents = [
81
+ {
82
+ "question": "how do i load those?",
83
+ "chat_history": "Human: What types of memory exist?\nAssistant: \n\nThere are a few different types of memory: Buffer, Summary, and Conversational Memory.",
84
+ "answer": "How do I load Buffer, Summary, and Conversational Memory",
85
+ },
86
+ {
87
+ "question": "how do i install this package?",
88
+ "chat_history": "",
89
+ "answer": "How do I install langchain?",
90
+ },
91
+ {
92
+ "question": "how do I set serpapi_api_key?",
93
+ "chat_history": "Human: can you write me a code snippet for that?\nAssistant: \n\nYes, you can create an Agent with a custom LLMChain in LangChain. Here is a [link](https://langchain.readthedocs.io/en/latest/modules/agents/examples/custom_agent.html) to the documentation that provides a code snippet for creating a custom Agent.",
94
+ "answer": "How do I set the serpapi_api_key?",
95
+ },
96
+ {
97
+ "question": "What are some methods for data augmented generation?",
98
+ "chat_history": "Human: List all methods of an Agent class please\nAssistant: \n\nTo answer your question, you can find a list of all the methods of the Agent class in the [API reference documentation](https://langchain.readthedocs.io/en/latest/modules/agents/reference.html).",
99
+ "answer": "What are some methods for data augmented generation?",
100
+ },
101
+ {
102
+ "question": "can you write me a code snippet for that?",
103
+ "chat_history": "Human: how do I create an agent with custom LLMChain?\nAssistant: \n\nTo create an Agent with a custom LLMChain in LangChain, you can use the [Custom Agent example](https://langchain.readthedocs.io/en/latest/modules/agents/examples/custom_agent.html). This example shows how to create a custom LLMChain and use an existing Agent class to parse the output. For more information on Agents and Tools, check out the [Key Concepts](https://langchain.readthedocs.io/en/latest/modules/agents/key_concepts.html) documentation.",
104
+ "answer": "Can you provide a code snippet for creating an Agent with a custom LLMChain?",
105
+ },
106
+ ]
107
+ from langchain.prompts.example_selector.semantic_similarity import \
108
+ sorted_values
109
+
110
+ for d in documents:
111
+ d["content"] = " ".join(sorted_values(d))
112
+ with client.batch as batch:
113
+ for text in documents:
114
+ batch.add_data_object(
115
+ text,
116
+ "Rephrase",
117
+ )
118
+
119
+ client.schema.get()
120
+ schema = {
121
+ "classes": [
122
+ {
123
+ "class": "QA",
124
+ "description": "Rephrase Examples",
125
+ "vectorizer": "text2vec-openai",
126
+ "moduleConfig": {
127
+ "text2vec-openai": {
128
+ "model": "ada",
129
+ "modelVersion": "002",
130
+ "type": "text",
131
+ }
132
+ },
133
+ "properties": [
134
+ {
135
+ "dataType": ["text"],
136
+ "moduleConfig": {
137
+ "text2vec-openai": {
138
+ "skip": False,
139
+ "vectorizePropertyName": False,
140
+ }
141
+ },
142
+ "name": "content",
143
+ },
144
+ {
145
+ "dataType": ["text"],
146
+ "description": "The link",
147
+ "moduleConfig": {
148
+ "text2vec-openai": {
149
+ "skip": True,
150
+ "vectorizePropertyName": False,
151
+ }
152
+ },
153
+ "name": "question",
154
+ },
155
+ {
156
+ "dataType": ["text"],
157
+ "description": "The link",
158
+ "moduleConfig": {
159
+ "text2vec-openai": {
160
+ "skip": True,
161
+ "vectorizePropertyName": False,
162
+ }
163
+ },
164
+ "name": "answer",
165
+ },
166
+ {
167
+ "dataType": ["text"],
168
+ "description": "The link",
169
+ "moduleConfig": {
170
+ "text2vec-openai": {
171
+ "skip": True,
172
+ "vectorizePropertyName": False,
173
+ }
174
+ },
175
+ "name": "summaries",
176
+ },
177
+ {
178
+ "dataType": ["text"],
179
+ "description": "The link",
180
+ "moduleConfig": {
181
+ "text2vec-openai": {
182
+ "skip": True,
183
+ "vectorizePropertyName": False,
184
+ }
185
+ },
186
+ "name": "sources",
187
+ },
188
+ ],
189
+ },
190
+ ]
191
+ }
192
+
193
+ client.schema.create(schema)
194
+
195
+ documents = [
196
+ {
197
+ "question": "how do i install langchain?",
198
+ "answer": "```pip install langchain```",
199
+ "summaries": ">Example:\nContent:\n---------\nYou can pip install langchain package by running 'pip install langchain'\n----------\nSource: foo.html",
200
+ "sources": "foo.html",
201
+ },
202
+ {
203
+ "question": "how do i import an openai LLM?",
204
+ "answer": "```from langchain.llm import OpenAI```",
205
+ "summaries": ">Example:\nContent:\n---------\nyou can import the open ai wrapper (OpenAI) from the langchain.llm module\n----------\nSource: bar.html",
206
+ "sources": "bar.html",
207
+ },
208
+ ]
209
+ from langchain.prompts.example_selector.semantic_similarity import \
210
+ sorted_values
211
+
212
+ for d in documents:
213
+ d["content"] = " ".join(sorted_values(d))
214
+ with client.batch as batch:
215
+ for text in documents:
216
+ batch.add_data_object(
217
+ text,
218
+ "QA",
219
+ )
ingest_faiss.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from langchain.text_splitter import CharacterTextSplitter
3
+ import faiss
4
+ from langchain.vectorstores import FAISS
5
+ from langchain.embeddings import OpenAIEmbeddings
6
+ import pickle
7
+
8
+ def create_vector_store(suffix, paper_text):
9
+ # with open('paper-dir/main.txt') as f:
10
+ # paper_text = f.read()
11
+
12
+ split_chars = ["§", "§.§"]
13
+ data = []
14
+ for c in split_chars:
15
+ paper_text = paper_text.replace(c, "§")
16
+ data = paper_text.split("§")
17
+
18
+ # metadatas is the rest of the text on the same line as the section symbol
19
+ sources = []
20
+ for d in data:
21
+ sources.append(d.split("\n")[0].strip())
22
+ # data = [d.split("\n")[1:] for d in data]
23
+
24
+ sources[0] = "Beginning of paper"
25
+
26
+ # Here we split the documents, as needed, into smaller chunks.
27
+ # We do this due to the context limits of the LLMs.
28
+ text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n")
29
+ docs = []
30
+ metadatas = []
31
+ for i, d in enumerate(data):
32
+ splits = text_splitter.split_text(d)
33
+ docs.extend(splits)
34
+ metadatas.extend([{"source": sources[i]}] * len(splits))
35
+
36
+ # Here we create a vector store from the documents and save it to disk.
37
+ store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
38
+ faiss.write_index(store.index, f"{suffix}/docs.index")
39
+ store.index = None
40
+ with open(f"{suffix}/faiss_store.pkl", "wb") as f:
41
+ pickle.dump(store, f)
paper ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aeb23e3ec5eb22876c9c3b823841a82706cabe5aeacbe1783686a1db8aa0285
3
+ size 10862082
qa.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Ask a question to the notion database."""
2
+ import faiss
3
+ from langchain import OpenAI
4
+ from langchain.chains import VectorDBQAWithSourcesChain
5
+ import pickle
6
+ import argparse
7
+
8
+ parser = argparse.ArgumentParser(description='Ask a question about the paper')
9
+ parser.add_argument('question', type=str, help='The question to ask about the paper')
10
+ args = parser.parse_args()
11
+
12
+ # Load the LangChain.
13
+ index = faiss.read_index("docs.index")
14
+
15
+ with open("faiss_store.pkl", "rb") as f:
16
+ store = pickle.load(f)
17
+
18
+ store.index = index
19
+ chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store)
20
+ result = chain({"question": args.question})
21
+ print(f"Answer: {result['answer']}")
22
+ sources = result["sources"].split(", ")
23
+ sources = [s.title() for s in sources]
24
+
25
+ import code
26
+ code.interact(local=locals())
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain==0.0.64
2
+ beautifulsoup4
3
+ weaviate-client
4
+ openai
5
+ black
6
+ isort
7
+ Flask
8
+ transformers
9
+ gradio
10
+ pylatexenc