jsulz HF staff commited on
Commit
9a8d079
Β·
1 Parent(s): 33de0a0

wrapping up Space

Browse files
Files changed (4) hide show
  1. README.md +16 -3
  2. app.py +157 -90
  3. poetry.lock +79 -1
  4. pyproject.toml +1 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: Sotu Analysis
3
- emoji: πŸ†
4
  colorFrom: purple
5
  colorTo: yellow
6
  sdk: gradio
@@ -8,6 +8,19 @@ sdk_version: 4.42.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
 
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: State of the Union Analysis
3
+ emoji: πŸ“Š
4
  colorFrom: purple
5
  colorTo: yellow
6
  sdk: gradio
 
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
+ short_description: A set of data visualizations for all recorded U.S. State of the Union speeches and messages.
12
+ datasets: jsulz/state-of-the-union-addresses
13
  ---
14
 
15
+ # State of the Union Analysis
16
+
17
+ This Space is a Gradio data dashboard for visualizing different aspects of State of the Union addresses over the years.
18
+
19
+ The data comes from a Hugging Face dataset - [jsulz/state-of-the-union-addresses](https://huggingface.co/datasets/jsulz/state-of-the-union-addresses). To read more about how the data was collected and transformed, visit the [dataset card](https://huggingface.co/datasets/jsulz/state-of-the-union-addresses).
20
+
21
+ The Space makes use of:
22
+
23
+ - Gradio
24
+ - Plotly (for the charts)
25
+ - nltk (to create an n-gram visualization)
26
+ - datasets (for loading the dataset from Hugging Face)
app.py CHANGED
@@ -1,27 +1,20 @@
 
1
  import gradio as gr
2
  from datasets import load_dataset
3
  from nltk.util import ngrams
4
- from collections import Counter
5
  import pandas as pd
6
  import plotly.express as px
7
  import plotly.graph_objects as go
8
  from plotly.subplots import make_subplots
9
- import matplotlib.pyplot as plt
 
10
 
11
  # Load the dataset and convert it to a Pandas dataframe
12
  sotu_dataset = "jsulz/state-of-the-union-addresses"
13
  dataset = load_dataset(sotu_dataset)
14
  df = dataset["train"].to_pandas()
15
- # decode the tokens-nostop column from a byte array to a list of string
16
- """
17
- df["tokens-nostop"] = df["tokens-nostop"].apply(
18
- lambda x: x.decode("utf-8")
19
- .replace('"', "")
20
- .replace("[", "")
21
- .replace("]", "")
22
- .split(",")
23
- )
24
- """
25
  df["word_count"] = df["speech_html"].apply(lambda x: len(x.split()))
26
  # calculate the automated readibility index reading ease score for each address
27
  # automated readability index = 4.71 * (characters/words) + 0.5 * (words/sentences) - 21.43
@@ -30,33 +23,133 @@ df["ari"] = df["no-contractions"].apply(
30
  + (0.5 * (len(x.split()) / len(x.split("."))))
31
  - 21.43
32
  )
 
33
  df = df.sort_values(by="date")
34
  written = df[df["categories"] == "Written"]
35
  spoken = df[df["categories"] == "Spoken"]
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  # Create a Gradio interface with blocks
38
  with gr.Blocks() as demo:
 
39
  gr.Markdown(
40
  """
41
  # A Dashboard to Analyze the State of the Union Addresses
 
42
  """
43
  )
44
- fig1 = px.line(
45
- df,
46
- x="date",
47
- y="word_count",
48
- title="Total Number of Words in Addresses",
49
- line_shape="spline",
50
- )
51
- fig1.update_layout(
52
- xaxis=dict(title="Date of Address"),
53
- yaxis=dict(title="Word Count"),
54
- )
55
- gr.Plot(fig1)
 
 
 
 
 
 
 
 
 
 
56
  # group by president and category and calculate the average word count sort by date
57
  avg_word_count = (
58
  df.groupby(["potus", "categories"])["word_count"].mean().reset_index()
59
  )
 
60
  fig2 = px.bar(
61
  avg_word_count,
62
  x="potus",
@@ -76,7 +169,14 @@ with gr.Blocks() as demo:
76
  ),
77
  legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
78
  )
 
 
 
 
 
79
  gr.Plot(fig2)
 
 
80
  with gr.Row():
81
  ari = df[["potus", "date", "ari", "categories"]]
82
  fig3 = px.line(
@@ -90,83 +190,50 @@ with gr.Blocks() as demo:
90
  xaxis=dict(title="Date of Address"),
91
  yaxis=dict(title="ARI Score"),
92
  )
93
- gr.Plot(fig3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  # get all unique president names
95
  presidents = df["potus"].unique()
96
  # convert presidents to a list
97
  presidents = presidents.tolist()
98
  # create a dropdown to select a president
99
  president = gr.Dropdown(label="Select a President", choices=presidents)
 
100
  grams = gr.Slider(minimum=1, maximum=4, step=1, label="N-grams", interactive=True)
101
 
102
- def plotly_bar(n_grams, potus):
103
- if potus is not None:
104
- # create a Counter object from the trigrams
105
- potus_df = df[df["potus"] == potus]
106
- # decode the tokens-nostop column from a byte array to a list of string
107
- trigrams = (
108
- potus_df["tokens-nostop"]
109
- .apply(lambda x: list(ngrams(x, n_grams)))
110
- .apply(Counter)
111
- .sum()
112
- )
113
- # get the most common trigrams
114
- common_trigrams = trigrams.most_common(10)
115
- # unzip the list of tuples and plot the trigrams and counts as a bar chart
116
- trigrams, counts = zip(*common_trigrams)
117
- # join the trigrams into a single string
118
- trigrams = [" ".join(trigram) for trigram in trigrams]
119
- # create a dataframe from the trigrams and counts
120
- trigrams_df = pd.DataFrame({"trigrams": trigrams, "counts": counts})
121
- fig4 = px.bar(
122
- trigrams_df,
123
- x="counts",
124
- y="trigrams",
125
- title=f"{potus}'s top {n_grams}-grams",
126
- orientation="h",
127
- height=400,
128
- )
129
- return fig4
130
 
131
  if president != "All" and president is not None:
132
- gr.Plot(plotly_bar, inputs=[grams, president])
133
-
134
- def plotly_line(president):
135
- if president != "All" and president is not None:
136
- potus_df = df[df["potus"] == president]
137
- fig5 = make_subplots(specs=[[{"secondary_y": True}]])
138
- fig5.add_trace(
139
- go.Scatter(
140
- x=potus_df["date"],
141
- y=potus_df["word_count"],
142
- name="Word Count",
143
- ),
144
- secondary_y=False,
145
- )
146
- fig5.add_trace(
147
- go.Scatter(
148
- x=potus_df["date"],
149
- y=potus_df["ari"],
150
- name="ARI",
151
- ),
152
- secondary_y=True,
153
- )
154
- # Add figure title
155
- fig5.update_layout(title_text="Address Word Count and ARI")
156
-
157
- # Set x-axis title
158
- fig5.update_xaxes(title_text="Date of Address")
159
-
160
- # Set y-axes titles
161
- fig5.update_yaxes(title_text="Word Count", secondary_y=False)
162
- fig5.update_yaxes(title_text="ARI", secondary_y=True)
163
- return fig5
164
-
165
- # calculate the total number of words in the speech_html column and add it to a new column
166
- # if the president is "All", show the word count for all presidents
167
- # if the president is not "All", show the word count for the selected president
168
  if president != "All" and president is not None:
169
- gr.Plot(plotly_line, inputs=[president])
170
 
171
 
172
  demo.launch(share=True)
 
1
+ from collections import Counter
2
  import gradio as gr
3
  from datasets import load_dataset
4
  from nltk.util import ngrams
 
5
  import pandas as pd
6
  import plotly.express as px
7
  import plotly.graph_objects as go
8
  from plotly.subplots import make_subplots
9
+ from matplotlib import pyplot as plt
10
+ from wordcloud import WordCloud
11
 
12
  # Load the dataset and convert it to a Pandas dataframe
13
  sotu_dataset = "jsulz/state-of-the-union-addresses"
14
  dataset = load_dataset(sotu_dataset)
15
  df = dataset["train"].to_pandas()
16
+ # Do some on-the-fly calculations
17
+ # calcualte the number of words in each address
 
 
 
 
 
 
 
 
18
  df["word_count"] = df["speech_html"].apply(lambda x: len(x.split()))
19
  # calculate the automated readibility index reading ease score for each address
20
  # automated readability index = 4.71 * (characters/words) + 0.5 * (words/sentences) - 21.43
 
23
  + (0.5 * (len(x.split()) / len(x.split("."))))
24
  - 21.43
25
  )
26
+ # Sort the dataframe by date because Plotly doesn't do any of this automatically
27
  df = df.sort_values(by="date")
28
  written = df[df["categories"] == "Written"]
29
  spoken = df[df["categories"] == "Spoken"]
30
 
31
+ """
32
+ Helper functions for Plotly charts
33
+ """
34
+
35
+
36
+ def plotly_ngrams(n_grams, potus):
37
+ if potus is not None:
38
+ # Filter on the potus
39
+ potus_df = df[df["potus"] == potus]
40
+ # Create a counter generator for the n-grams
41
+ trigrams = (
42
+ potus_df["tokens-nostop"]
43
+ .apply(lambda x: list(ngrams(x, n_grams)))
44
+ .apply(Counter)
45
+ .sum()
46
+ )
47
+ # get the most common trigrams
48
+ common_trigrams = trigrams.most_common(10)
49
+ # unzip the list of tuples and plot the trigrams and counts as a bar chart
50
+ trigrams, counts = zip(*common_trigrams)
51
+ # join the trigrams into a single string
52
+ trigrams = [" ".join(trigram) for trigram in trigrams]
53
+ # create a dataframe from the trigrams and counts
54
+ trigrams_df = pd.DataFrame({"trigrams": trigrams, "counts": counts})
55
+ fig4 = px.bar(
56
+ trigrams_df,
57
+ x="counts",
58
+ y="trigrams",
59
+ title=f"{potus}'s top {n_grams}-grams",
60
+ orientation="h",
61
+ height=400,
62
+ )
63
+ return fig4
64
+
65
+
66
+ def plotly_word_and_ari(president):
67
+ if president != "All" and president is not None:
68
+ potus_df = df[df["potus"] == president]
69
+ fig5 = make_subplots(specs=[[{"secondary_y": True}]])
70
+ fig5.add_trace(
71
+ go.Scatter(
72
+ x=potus_df["date"],
73
+ y=potus_df["word_count"],
74
+ name="Word Count",
75
+ ),
76
+ secondary_y=False,
77
+ )
78
+ fig5.add_trace(
79
+ go.Scatter(
80
+ x=potus_df["date"],
81
+ y=potus_df["ari"],
82
+ name="ARI",
83
+ ),
84
+ secondary_y=True,
85
+ )
86
+ # Add figure title
87
+ fig5.update_layout(title_text="Address Word Count and ARI")
88
+
89
+ # Set x-axis title
90
+ fig5.update_xaxes(title_text="Date of Address")
91
+
92
+ # Set y-axes titles
93
+ fig5.update_yaxes(title_text="Word Count", secondary_y=False)
94
+ fig5.update_yaxes(title_text="ARI", secondary_y=True)
95
+ return fig5
96
+
97
+
98
+ def plt_wordcloud(president):
99
+ if president != "All" and president is not None:
100
+ potus_df = df[df["potus"] == president]
101
+ lemmatized = potus_df["lemmatized"].apply(lambda x: " ".join(x))
102
+ # build a single string from lemmatized
103
+ lemmatized = " ".join(lemmatized)
104
+ # create a wordcloud from the lemmatized column of the dataframe
105
+ wordcloud = WordCloud(background_color="white", width=800, height=400).generate(
106
+ lemmatized
107
+ )
108
+ # create a matplotlib figure
109
+ fig6 = plt.figure(figsize=(8, 4))
110
+ # add the wordcloud to the figure
111
+ plt.tight_layout()
112
+ plt.imshow(wordcloud, interpolation="bilinear")
113
+ plt.axis("off")
114
+ return fig6
115
+
116
+
117
  # Create a Gradio interface with blocks
118
  with gr.Blocks() as demo:
119
+ # Build out the top level static charts and content
120
  gr.Markdown(
121
  """
122
  # A Dashboard to Analyze the State of the Union Addresses
123
+ This dashboard provides an analysis of all State of the Union (SOTU) addresses from 1790 to 2020 including written and spoken addresses. The data is sourced from the [State of the Union Addresses dataset](https://huggingface.co/jsulz/state-of-the-union-addresses) on the Hugging Face Datasets Hub. You can read more about how the data was gathered and cleaned on the dataset card. To read the speeches, you can visit the [The American Presidency Project's State of the Union page](https://www.presidency.ucsb.edu/documents/presidential-documents-archive-guidebook/annual-messages-congress-the-state-the-union) where this data was sourced.
124
  """
125
  )
126
+ # Basic line chart showing the total number of words in each address
127
+ with gr.Row():
128
+ gr.Markdown(
129
+ """
130
+ ## The shape of words
131
+ The line chart to the right shows the total number of words in each address. However, not all SOTUs are created equally. From 1801 to 1916, each address was a written message to Congress. In 1913, Woodrow Wilson broke with tradition and delivered his address in person. Since then, the addresses have been a mix of written and spoken (mostly spoken).
132
+
133
+ The spikes you see in the early 1970's and early 1980's are from written addresses by Richard Nixon and Jimmy Carter respectively.
134
+ """
135
+ )
136
+ fig1 = px.line(
137
+ df,
138
+ x="date",
139
+ y="word_count",
140
+ title="Total Number of Words in Addresses",
141
+ line_shape="spline",
142
+ )
143
+ fig1.update_layout(
144
+ xaxis=dict(title="Date of Address"),
145
+ yaxis=dict(title="Word Count"),
146
+ )
147
+ gr.Plot(fig1, scale=2)
148
  # group by president and category and calculate the average word count sort by date
149
  avg_word_count = (
150
  df.groupby(["potus", "categories"])["word_count"].mean().reset_index()
151
  )
152
+ # Build a bar chart showing the average number of words in each address by president
153
  fig2 = px.bar(
154
  avg_word_count,
155
  x="potus",
 
169
  ),
170
  legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
171
  )
172
+ gr.Markdown(
173
+ """
174
+ Now that we have a little historical context, what does this data look like if we split things out by president? The bar chart below shows the average number of words in each address by president. The bars are grouped by written and spoken addresses.
175
+ """
176
+ )
177
  gr.Plot(fig2)
178
+
179
+ # Create a line chart showing the Automated Readability Index in each address
180
  with gr.Row():
181
  ari = df[["potus", "date", "ari", "categories"]]
182
  fig3 = px.line(
 
190
  xaxis=dict(title="Date of Address"),
191
  yaxis=dict(title="ARI Score"),
192
  )
193
+ gr.Plot(fig3, scale=2)
194
+ gr.Markdown(
195
+ """
196
+ The line chart to the left shows the Automated Redibility Index (ARI) for each speech by year. The ARI is calculated using the formula: 4.71 * (characters/words) + 0.5 * (words/sentences) - 21.43. In general, ARI scores correspond to U.S. grade levels. For example, an ARI of 8.0 corresponds to an 8th grade reading level.
197
+
198
+ While there are other scores that are more representative of attributes we might want to measure, they require values like syllables. The ARI is a simple score to compute with our data.
199
+
200
+ The drop off is quite noticeable, don't you think? ;)
201
+ """
202
+ )
203
+ gr.Markdown(
204
+ """
205
+ ## Dive Deeper on Each President
206
+
207
+ Use the dropdown to select a president a go a little deeper.
208
+
209
+ To begin with, there is an [n-gram](https://en.wikipedia.org/wiki/N-gram) bar chart built from all of the given president's addresses. An n-gram is a contiguous sequence of n items from a given sample of text or speech. Because written and spoken speech is littered with so-called "stop words" such as "and", "the", and "but", we've removed these from the text.
210
+
211
+ The slider only goes up to 4-grams because the data is sparse beyond that. I personally found the n-grams from our last three presidents to be less than inspiring and full of platitudes. Earlier presidents have more interesting n-grams.
212
+
213
+ Next up is a word cloud of the lemmatized text from the president's addresses. [Lemmatization](https://en.wikipedia.org/wiki/Lemmatization) is the process of grouping together the inflected forms of a word so they can be analyzed as a single item. Think of this as a more advanced version of [stemming](https://en.wikipedia.org/wiki/Stemming) where we can establish novel links between words like "better" and "good" that might otherwise be overlooked in stemming.
214
+
215
+ You can also see a line chart of word count and ARI for each address.
216
+ """
217
+ )
218
  # get all unique president names
219
  presidents = df["potus"].unique()
220
  # convert presidents to a list
221
  presidents = presidents.tolist()
222
  # create a dropdown to select a president
223
  president = gr.Dropdown(label="Select a President", choices=presidents)
224
+ # create a slider for number of word grams
225
  grams = gr.Slider(minimum=1, maximum=4, step=1, label="N-grams", interactive=True)
226
 
227
+ # show a bar chart of the top n-grams for a selected president
228
+ if president != "All" and president is not None:
229
+ gr.Plot(plotly_ngrams, inputs=[grams, president])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
 
231
  if president != "All" and president is not None:
232
+ gr.Plot(plt_wordcloud, scale=2, inputs=[president])
233
+
234
+ # show a line chart of word count and ARI for a selected president
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
  if president != "All" and president is not None:
236
+ gr.Plot(plotly_word_and_ari, inputs=[president])
237
 
238
 
239
  demo.launch(share=True)
poetry.lock CHANGED
@@ -2422,6 +2422,84 @@ files = [
2422
  {file = "websockets-12.0.tar.gz", hash = "sha256:81df9cbcbb6c260de1e007e58c011bfebe2dafc8435107b0537f393dd38c8b1b"},
2423
  ]
2424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2425
  [[package]]
2426
  name = "xxhash"
2427
  version = "3.5.0"
@@ -2660,4 +2738,4 @@ multidict = ">=4.0"
2660
  [metadata]
2661
  lock-version = "2.0"
2662
  python-versions = "^3.12"
2663
- content-hash = "d845e5be5136098d41c387e2757551c6be040799b6b8415b2f6ca19fec7f983b"
 
2422
  {file = "websockets-12.0.tar.gz", hash = "sha256:81df9cbcbb6c260de1e007e58c011bfebe2dafc8435107b0537f393dd38c8b1b"},
2423
  ]
2424
 
2425
+ [[package]]
2426
+ name = "wordcloud"
2427
+ version = "1.9.3"
2428
+ description = "A little word cloud generator"
2429
+ optional = false
2430
+ python-versions = ">=3.7"
2431
+ files = [
2432
+ {file = "wordcloud-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5fce423a24e6ca1b89b2770a7c6917d6e26f04bcfefa601cf61819b2fc0770c4"},
2433
+ {file = "wordcloud-1.9.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3b6adfc1465b9176b8bc602745dd3ed8ea782b006a81cb59eab3dde92ad9f94c"},
2434
+ {file = "wordcloud-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad6db37a6f5abeba51a5d503228ea320d4f2fa774864103e7b24acd9dd86fd0e"},
2435
+ {file = "wordcloud-1.9.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5e74ac99e9582873d7ee28bd03e125dcf73ae46666d55fb4c13e82e90c0e074a"},
2436
+ {file = "wordcloud-1.9.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4001317c0e3b5cb6fd106228ddcd27524d1caf9ae468b3c2c2fc571c6ce56b22"},
2437
+ {file = "wordcloud-1.9.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5f86042e5ce12e2795798033a56f0246906b4d7d9027d554b6cd951ce2fd342a"},
2438
+ {file = "wordcloud-1.9.3-cp310-cp310-win32.whl", hash = "sha256:3b90f0390c0a05ba4b4580fb765a3d45d8d21519b50ca5006d6dbdc2a0b86507"},
2439
+ {file = "wordcloud-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:6f7977285df9254b8704d3f895c06814a6183c6c89e140d6281848c076635e91"},
2440
+ {file = "wordcloud-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ced0d5c946d82cfc778febafe3eedeb0bae07dd57ea4f21fe06b9ec8225ab31"},
2441
+ {file = "wordcloud-1.9.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6f5499e6360219e61808dc0d2b00cd5104f78a82d2ae8f7986df04731713835f"},
2442
+ {file = "wordcloud-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb1e8bb7d60f7a90fa8439c7b56dd1df60766115fd57480ac0d83ca5204e0117"},
2443
+ {file = "wordcloud-1.9.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6e33328044db5c01487f2a3a023b5476947942dacd6a5dc8c217fa039f6c5bd9"},
2444
+ {file = "wordcloud-1.9.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:998dc0dc8fcbff88f566f17cb5e0eb3bb21fcafd387b0670be6c14feacaf4cdc"},
2445
+ {file = "wordcloud-1.9.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e1a1c3cfa86b605a19711ec58920ccb694dca9d5c9d00b373f4d5952d63793e9"},
2446
+ {file = "wordcloud-1.9.3-cp311-cp311-win32.whl", hash = "sha256:f504e3291256c0b6fca044602f8f0e5cb56b7c33724cde9d279c4077fa5b6d27"},
2447
+ {file = "wordcloud-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:103c9b0465e1cf5b7a38b49ab1c3a0b0301762fa56602ac79287f9d22b46ade3"},
2448
+ {file = "wordcloud-1.9.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:dfea303fc1dec4811e4a5671a8021a89724b6fa70639d059ad30c492932be447"},
2449
+ {file = "wordcloud-1.9.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:512f3c9a2e8579269a33ac9219d042fd0cc5a3a524ee68079238a3e4efe2b879"},
2450
+ {file = "wordcloud-1.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d00d916509a17b432032161d492ed7f30b2ebd921303090fe1d2b57011a49cc0"},
2451
+ {file = "wordcloud-1.9.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d5e0e7bbd269a62baa63ea2175faea4d74435c0ad828f3d5999fa4c33ebe0629"},
2452
+ {file = "wordcloud-1.9.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:483aa4f8d17b9744a3b238269593d1794b962fc757a72a9e7e8468c2665cffb7"},
2453
+ {file = "wordcloud-1.9.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:64b342a79553970fa04083761d041067323219ad62b5550a496e42436d23cbb3"},
2454
+ {file = "wordcloud-1.9.3-cp312-cp312-win32.whl", hash = "sha256:419acfe0b1d1227b9e3e14ec1bb6c40fd7fa652df4adf81f0ba3e00daca500b5"},
2455
+ {file = "wordcloud-1.9.3-cp312-cp312-win_amd64.whl", hash = "sha256:2061a9978a6243107ce1a8a9fa24f421b03a0f7e620769b6f5075857e75aa615"},
2456
+ {file = "wordcloud-1.9.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:21f47fabe189f39532378759300a624ae166519dfafbd6a22cfe65b14a7d104d"},
2457
+ {file = "wordcloud-1.9.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:524065f8a5a79e00748f45efbeacd25ac1d15850e0d0588753b17a8b2de2a6a7"},
2458
+ {file = "wordcloud-1.9.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b2bb53492bc8663ba90a300bbd2da7be5059f9ad192ed1150e9bbbda8016c9a"},
2459
+ {file = "wordcloud-1.9.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:643243474faee460e7d08944d3e529c58d0cbf8be11626fbb918ee8ccb913a23"},
2460
+ {file = "wordcloud-1.9.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d95f44739a6972abfb97c12656999952dd28ed03700ee8b6efe35d688d489b36"},
2461
+ {file = "wordcloud-1.9.3-cp37-cp37m-win32.whl", hash = "sha256:e56364c8829d399397a649501f834c12751ab106cba488ba8d86d532889b528c"},
2462
+ {file = "wordcloud-1.9.3-cp37-cp37m-win_amd64.whl", hash = "sha256:78f4a3fd3526884e4f526ae070bcb47401766c48c9cb6488933f608f810fadae"},
2463
+ {file = "wordcloud-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0058cf08573c99283fe189e93354d20ca8c9a8aac7207d96e74b93aedd02cdcc"},
2464
+ {file = "wordcloud-1.9.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:47d6918381a8a816141bdd391376bff703ec5aa3a6bd88631097a5e2963ebd1a"},
2465
+ {file = "wordcloud-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05aa3269c5af573cfb11e269de0fe73c2c72aefdd90cdb41368744e7d8bc7507"},
2466
+ {file = "wordcloud-1.9.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d74e206f42af172db4d3c0054853523bf46070b12f0626493a56599957dd2196"},
2467
+ {file = "wordcloud-1.9.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1932726635c8ed12bb74201d2a6b07f18c2f732aecadb9ae915832485241991f"},
2468
+ {file = "wordcloud-1.9.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:038de1701e7853c41850644453f1c9e69f878e480d42efae154684a47fd59f1a"},
2469
+ {file = "wordcloud-1.9.3-cp38-cp38-win32.whl", hash = "sha256:19aa05f60d9261301e4942fd1b1c4b458d903f24c12d2bd1c6ecbb752697a2f3"},
2470
+ {file = "wordcloud-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:ab5bae12cf27d8de986e4d4518d4778f2b56c660b250b631ff805024038311a1"},
2471
+ {file = "wordcloud-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:888d088f54a897b8597da2fae3954d74b1f7251f7d311bbcc30ec3c6987d3605"},
2472
+ {file = "wordcloud-1.9.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:daa6cfa11ce24e7eb4e42dc896dae4f74ae2166cf90ec997996300566e6811d1"},
2473
+ {file = "wordcloud-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:387dc2bd528ff6bb661451f2a9fd4ccf74b86072d7a2c868285d4c0cf26abeb4"},
2474
+ {file = "wordcloud-1.9.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40c32a324319db610b40f387a2a0b42d091817958a5272e0a4c4eb6a158588b5"},
2475
+ {file = "wordcloud-1.9.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:8078c6c58db4ccb893f120354e7e08bc48a5a5aac3e764f9008bc96a769b208c"},
2476
+ {file = "wordcloud-1.9.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:81f15eb60abc1676808bb85e2edfdbdc0a9011383f2a729c1c2a0cb941516768"},
2477
+ {file = "wordcloud-1.9.3-cp39-cp39-win32.whl", hash = "sha256:1d1680bf6c3d1b2f8e3bd02ccfa868fee2655fe13cf5b9e9905251050448fbbd"},
2478
+ {file = "wordcloud-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:c0f458681e4d49be36064f21bfb1dc8d8c3021fe30e474ee634666b4f84fd851"},
2479
+ {file = "wordcloud-1.9.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:baea9ac88ec1ab317461c75834b64ad5dad12a02c4f2384dd546eac3c316dbbb"},
2480
+ {file = "wordcloud-1.9.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e6956b9f0d0eb14a12f46d41aebb4e7ad2d4c2ec417cc7c586bebd2ddc9c8311"},
2481
+ {file = "wordcloud-1.9.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d221b4d0d1d2a1d79286c41d8a4c0ce70065488f153e5d81cc0be7fb494ff10f"},
2482
+ {file = "wordcloud-1.9.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:db39dbe91dd31ffb667edcd496f4eeb85ceea397fef4ad51d0766ab934088cc7"},
2483
+ {file = "wordcloud-1.9.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a6ae5db43807ca10f5c77dd2d22c78f8f9399758cc5ac6afd7f3c19e58b75d66"},
2484
+ {file = "wordcloud-1.9.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a1c431f20ee28a8840f2552a89bd8332c455c318f4de7b6c2ca3159b76df4f0"},
2485
+ {file = "wordcloud-1.9.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1847ca4466e2b1588478dd8eb87fa7baa28515b37ab7926471595e8ac81e6578"},
2486
+ {file = "wordcloud-1.9.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:7b0e14e4dfcff7dee331df7880a2031e352e95a7d30e74ff152f162488b04179"},
2487
+ {file = "wordcloud-1.9.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f1c0cff6037a3dc46437537a31925f3895d742fb6d67af71194149763de16a76"},
2488
+ {file = "wordcloud-1.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a36788c5c79604653327675023cbd97c68813640887b51ce651bb4f5c28c88b"},
2489
+ {file = "wordcloud-1.9.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e3907c6496e197a9c4be76770c5ff8a03eddbdfe5a151a55e4eedeaa45ab3ad"},
2490
+ {file = "wordcloud-1.9.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:65e6f6b68eecb85c326ae19729dd4151fcdebffc2142c9ee882dc2de955210d0"},
2491
+ {file = "wordcloud-1.9.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0c8e18c4afa025819332efffe8008267a83a9c54fe72ae1bc889ddce0eec470d"},
2492
+ {file = "wordcloud-1.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4df25cb5dd347e43d53e02a009418f5776e7651063aff991865da8f6336bf193"},
2493
+ {file = "wordcloud-1.9.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:53489ad22d58be3896ec16ed47604832e393224c89f7d7eed040096b07141ac4"},
2494
+ {file = "wordcloud-1.9.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:61de4a5f3bfd33e0cb013cce6143bcf71959f3cd8536650b90134d745a553c2c"},
2495
+ {file = "wordcloud-1.9.3.tar.gz", hash = "sha256:a9aa738d63ed674a40f0cc31adb83f4ca5fc195f03a6aff6e010d1f5807d1c58"},
2496
+ ]
2497
+
2498
+ [package.dependencies]
2499
+ matplotlib = "*"
2500
+ numpy = ">=1.6.1"
2501
+ pillow = "*"
2502
+
2503
  [[package]]
2504
  name = "xxhash"
2505
  version = "3.5.0"
 
2738
  [metadata]
2739
  lock-version = "2.0"
2740
  python-versions = "^3.12"
2741
+ content-hash = "8542704f2fdef8c09d10c94785620326a8e2c72112368ee6f2e25fa45aeeb75a"
pyproject.toml CHANGED
@@ -13,6 +13,7 @@ pandas = "^2.2.2"
13
  nltk = "^3.9.1"
14
  plotly = "^5.23.0"
15
  matplotlib = "^3.9.2"
 
16
 
17
  [build-system]
18
  requires = ["poetry-core"]
 
13
  nltk = "^3.9.1"
14
  plotly = "^5.23.0"
15
  matplotlib = "^3.9.2"
16
+ wordcloud = "^1.9.3"
17
 
18
  [build-system]
19
  requires = ["poetry-core"]