import gradio as gr from datasets import load_dataset from nltk.util import ngrams from collections import Counter import pandas as pd import plotly.express as px import matplotlib.pyplot as plt # Load the dataset and convert it to a Pandas dataframe sotu_dataset = "jsulz/state-of-the-union-addresses" dataset = load_dataset(sotu_dataset) df = dataset["train"].to_pandas() # decode the tokens-nostop column from a byte array to a list of string df["tokens-nostop"] = df["tokens-nostop"].apply( lambda x: x.decode("utf-8") .replace('"', "") .replace("[", "") .replace("]", "") .split(",") ) df["word_count"] = df["speech_html"].apply(lambda x: len(x.split())) # calculate the automated readibility index reading ease score for each address # automated readability index = 4.71 * (characters/words) + 0.5 * (words/sentences) - 21.43 df["ari"] = df["no-contractions"].apply( lambda x: (4.71 * (len(x.replace(" ", "")) / len(x.split()))) + (0.5 * (len(x.split()) / len(x.split(".")))) - 21.43 ) written = df[df["categories"] == "Written"] spoken = df[df["categories"] == "Spoken"] # Create a Gradio interface with blocks with gr.Blocks() as demo: gr.Markdown( """ # A Dashboard to Analyze the State of the Union Addresses """ ) gr.BarPlot( df, x="date", y="word_count", title="Total Number of Words in the Speeches", color="categories", ) # group by president and category and calculate the average word count sort by date avg_word_count = ( df.groupby(["date", "potus", "categories"])["word_count"].mean().reset_index() ) # create a bar chart gr.BarPlot( avg_word_count, x="potus", y="word_count", title="Average Number of Words in the Speeches", color="categories", x_label_angle=-45, height=400, min_width=160, fill_height=True, container=True, scale=2, ) with gr.Row(): ari = df[["potus", "date", "ari", "categories"]] gr.LinePlot( ari, x="date", y="ari", title="Automated Readability Index", ) # get all unique president names presidents = df["potus"].unique() # convert presidents to a list presidents = presidents.tolist() # create a dropdown to select a president president = gr.Dropdown(label="Select a President", choices=["All"] + presidents) grams = gr.Slider(minimum=1, maximum=4, step=1, label="N-grams", interactive=True) with gr.Row(): # if president is not of type string @gr.render(inputs=president) def show_text(potus): if potus != "All" and potus is not None: ari = df[df["potus"] == potus][ ["date", "categories", "word_count", "ari"] ] gr.DataFrame(ari, height=200) @gr.render(inputs=president) def word_length_bar(potus): # calculate the total number of words in the speech_html column and add it to a new column # if the president is "All", show the word count for all presidents # if the president is not "All", show the word count for the selected president if potus != "All" and potus is not None: gr.LinePlot( df[df["potus"] == potus], x="date", y="word_count", title="Total Number of Words in the Speeches", ) with gr.Row(): @gr.render(inputs=[president, grams]) def ngram_bar(potus, n_grams): if potus != "All" and potus is not None: if type(n_grams) is not int: n_grams = 1 print(n_grams) # create a Counter object from the trigrams potus_df = df[df["potus"] == potus] # decode the tokens-nostop column from a byte array to a list of string trigrams = ( potus_df["tokens-nostop"] .apply(lambda x: list(ngrams(x, n_grams))) .apply(Counter) .sum() ) # get the most common trigrams common_trigrams = trigrams.most_common(20) # unzip the list of tuples and plot the trigrams and counts as a bar chart trigrams, counts = zip(*common_trigrams) # join the trigrams into a single string trigrams = [" ".join(trigram) for trigram in trigrams] # create a dataframe from the trigrams and counts trigrams_df = pd.DataFrame({"trigrams": trigrams, "counts": counts}) # plot the trigrams and counts as a bar chart from matplotlib fig, ax = plt.subplots(figsize=(12, 4)) ax.barh(trigrams_df["trigrams"], trigrams_df["counts"]) ax.set_title("Top 20 Trigrams") ax.set_ylabel("Count") ax.set_xlabel("Trigrams") plt.xticks(rotation=45) # make it tight layout plt.tight_layout() gr.Plot(value=fig, container=True) demo.launch()