Spaces:
Sleeping
Sleeping
File size: 13,911 Bytes
947150a c1b5e3a 87f778f 947150a 87f778f 947150a 87f778f 947150a c1b5e3a 87f778f 947150a 87f778f c1b5e3a 87f778f c1b5e3a 87f778f c1b5e3a 87f778f c1b5e3a 87f778f c1b5e3a 87f778f c1b5e3a 87f778f 947150a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
# Load the spaces.parquet file as a dataframe and do some pre cleaning steps
"""
Todos:
Clean up existing filtering code
"""
def filtered_df(emoji, likes, author, hardware, tags, models, datasets, space_licenses):
_df = df
# if emoji is not none, filter the dataframe with it
if emoji:
_df = _df[_df["emoji"].isin(emoji)]
# if likes is not none, filter the dataframe with it
if likes:
_df = _df[_df["likes"] >= likes]
if author:
_df = _df[_df["author"].isin(author)]
if hardware:
_df = _df[_df["hardware"].isin(hardware)]
# check to see if the array of sdk_tags contains any of the selected tags
if tags:
_df = _df[_df["sdk_tags"].apply(lambda x: any(tag in x for tag in tags))]
if models:
_df = _df[
_df["models"].apply(
lambda x: (
any(model in x for model in models) if x is not None else False
)
)
]
if datasets:
_df = _df[
_df["datasets"].apply(
lambda x: (
any(dataset in x for dataset in datasets)
if x is not None
else False
)
)
]
if space_licenses:
_df = _df[
_df["licenses"].apply(
lambda x: (
any(space_license in x for space_license in space_licenses)
if x is not None
else False
)
)
]
# rename the columns names to make them more readable
_df = _df.rename(
columns={
'url': 'URL',
'likes': 'Likes',
"r_models": "Models",
"r_datasets": "Datasets",
"r_licenses": "Licenses",
}
)
return _df[["URL", "Likes", "Models", "Datasets", "Licenses" ]]
with gr.Blocks(fill_width=True) as demo:
with gr.Tab(label="Spaces Overview"):
# The Pandas dataframe has a datetime column. Plot the growth of spaces (row entries) over time.
# The x-axis should be the date and the y-axis should be the cumulative number of spaces created up to that date .
df = pd.read_parquet("spaces.parquet")
df = df.sort_values("created_at")
df['cumulative_spaces'] = df['created_at'].rank(method='first').astype(int)
fig1 = px.line(df, x='created_at', y='cumulative_spaces', title='Growth of Spaces Over Time', labels={'created_at': 'Date', 'cumulative_spaces': 'Number of Spaces'}, template='plotly_dark')
gr.Plot(fig1)
# Create a pie charge showing the distribution of spaces by SDK
fig2 = px.pie(df, names='sdk', title='Distribution of Spaces by SDK', template='plotly_dark')
gr.Plot(fig2)
# create a pie chart showing the distribution of spaces by emoji for the top 10 used emojis
emoji_counts = df['emoji'].value_counts().head(10).reset_index()
fig3 = px.pie(emoji_counts, names='emoji', values='count', title='Distribution of Spaces by Emoji', template='plotly_dark')
gr.Plot(fig3)
# Create a dataframe with the top 10 authors and the number of spaces they have created
author_counts = df['author'].value_counts().head(20).reset_index()
author_counts.columns = ['Author', 'Number of Spaces']
gr.DataFrame(author_counts)
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
author_likes = df.groupby('author').agg({'likes': 'sum', 'id': 'count'}).reset_index()
fig4 = px.scatter(author_likes, x='id', y='likes', title='Relationship between Number of Spaces Created and Number of Likes', labels={'id': 'Number of Spaces Created', 'likes': 'Number of Likes'}, hover_data={'author': True}, template='plotly_dark')
gr.Plot(fig4)
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
emoji_likes = df.groupby('emoji').agg({'likes': 'sum', 'id': 'count'}).sort_values(by='likes', ascending=False).head(20).reset_index()
fig10 = px.scatter(emoji_likes, x='id', y='likes', title='Relationship between Number of Spaces Created and Number of Likes', labels={'id': 'Number of Spaces Created', 'likes': 'Number of Likes'}, hover_data={'emoji': True}, template='plotly_dark')
gr.Plot(fig10)
# Create a bar chart of hardware in use
hardware = df['hardware'].value_counts().reset_index()
hardware.columns = ['Hardware', 'Number of Spaces']
fig5 = px.bar(hardware, x='Hardware', y='Number of Spaces', title='Hardware in Use', labels={'Hardware': 'Hardware', 'Number of Spaces': 'Number of Spaces (log scale)'}, color='Hardware', template='plotly_dark')
fig5.update_layout(yaxis_type='log')
gr.Plot(fig5)
models = np.concatenate([arr for arr in df['models'].values if arr is not None])
model_count = {}
model_author_count = {}
for model in models:
author = model.split('/')[0]
if model in model_count:
model_count[model] += 1
else:
model_count[model] = 1
if author in model_author_count:
model_author_count[author] += 1
else:
model_author_count[author] = 1
model_author_count = pd.DataFrame(model_author_count.items(), columns=['Model Author', 'Number of Spaces'])
fig8 = px.bar(model_author_count.sort_values('Number of Spaces', ascending=False).head(20), x='Model Author', y='Number of Spaces', title='Most Popular Model Authors', labels={'Model': 'Model', 'Number of Spaces': 'Number of Spaces'}, template='plotly_dark')
gr.Plot(fig8)
model_count = pd.DataFrame(model_count.items(), columns=['Model', 'Number of Spaces'])
# then make a bar chart
fig6 = px.bar(model_count.sort_values('Number of Spaces', ascending=False).head(20), x='Model', y='Number of Spaces', title='Most Used Models', labels={'Model': 'Model', 'Number of Spaces': 'Number of Spaces'}, template='plotly_dark')
gr.Plot(fig6)
datasets = np.concatenate([arr for arr in df['datasets'].values if arr is not None])
dataset_count = {}
dataset_author_count = {}
for dataset in datasets:
author = dataset.split('/')[0]
if dataset in dataset_count:
dataset_count[dataset] += 1
else:
dataset_count[dataset] = 1
if author in dataset_author_count:
dataset_author_count[author] += 1
else:
dataset_author_count[author] = 1
dataset_count = pd.DataFrame(dataset_count.items(), columns=['Datasets', 'Number of Spaces'])
dataset_author_count = pd.DataFrame(dataset_author_count.items(), columns=['Dataset Author', 'Number of Spaces'])
fig9 = px.bar(dataset_author_count.sort_values('Number of Spaces', ascending=False).head(20), x='Dataset Author', y='Number of Spaces', title='Most Popular Dataset Authors', labels={'Dataset Author': 'Dataset Author', 'Number of Spaces': 'Number of Spaces'}, template='plotly_dark')
gr.Plot(fig9)
# then make a bar chart
fig7 = px.bar(dataset_count.sort_values('Number of Spaces', ascending=False).head(20), x='Datasets', y='Number of Spaces', title='Most Used Datasets', labels={'Datasets': 'Datasets', 'Number of Spaces': 'Number of Spaces'}, template='plotly_dark')
gr.Plot(fig7)
# Get the most duplicated spaces
duplicated_spaces = df['duplicated_from'].value_counts().head(20).reset_index()
duplicated_spaces.columns = ['Space', 'Number of Duplicates']
gr.DataFrame(duplicated_spaces)
# Get the most duplicated spaces
liked_spaces = df[['id', 'likes']].sort_values(by='likes', ascending=False).head(20)
liked_spaces.columns = ['Space', 'Number of Likes']
gr.DataFrame(liked_spaces)
# Get the spaces with the longest READMEs
readme_sizes = df[['id', 'readme_size']].sort_values(by='readme_size', ascending=False).head(20)
readme_sizes.columns = ['Space', 'Longest READMEs']
gr.DataFrame(readme_sizes)
with gr.Tab(label="Spaces Search"):
df = pd.read_parquet("spaces.parquet")
df = df[df["stage"] == "RUNNING"]
# combine the sdk and tags columns, one of which is a string and the other is an array of strings
# first convert the sdk column to an array of strings
df["sdk"] = df["sdk"].apply(lambda x: np.array([str(x)]))
df["licenses"] = df["license"].apply(
lambda x: np.array([str(x)]) if x is None else x
)
# then combine the sdk and tags columns so that their elements are together
df["sdk_tags"] = df[["sdk", "tags"]].apply(
lambda x: np.concatenate((x.iloc[0], x.iloc[1])), axis=1
)
df['emoji'] = np.where(df['emoji'].isnull(), '', df['emoji'])
# where the custom_domains column is not null, use that as the url, otherwise, use the host column
df["url"] = np.where(
df["custom_domains"].isnull(),
df["id"],
df["custom_domains"],
)
df["url"] = df[["url", "emoji"]].apply(
lambda x: (
f"<a target='_blank' href=https://huggingface.co/spaces/{x.iloc[0]}>{str(x.iloc[1]) + " " + x.iloc[0]}</a>"
if x.iloc[0] is not None and "/" in x.iloc[0]
else f"<a target='_blank' href=https://{x.iloc[0][0]}>{str(x.iloc[1]) + " " + x.iloc[0][0]}</a>"
),
axis=1,
)
# Make all of this human readable
df["r_models"] = [', '.join(models) if models is not None else '' for models in df["models"]]
df["r_sdk_tags"] = [', '.join(sdk_tags) if sdk_tags is not None else '' for sdk_tags in df["sdk_tags"]]
df["r_datasets"] = [', '.join(datasets) if datasets is not None else '' for datasets in df["datasets"]]
df["r_licenses"] = [', '.join(licenses) if licenses is not None else '' for licenses in df["licenses"]]
emoji = gr.Dropdown(
df["emoji"].unique().tolist(), label="Search by Emoji 🤗", multiselect=True
) # Dropdown to select the emoji
likes = gr.Slider(
minimum=df["likes"].min(),
maximum=df["likes"].max(),
step=1,
label="Filter by Likes",
) # Slider to filter by likes
hardware = gr.Dropdown(
df["hardware"].unique().tolist(), label="Search by Hardware", multiselect=True
)
author = gr.Dropdown(
df["author"].unique().tolist(), label="Search by Author", multiselect=True
)
# get the list of unique strings in the sdk_tags column
sdk_tags = np.unique(np.concatenate(df["sdk_tags"].values))
# create a dropdown for the sdk_tags
sdk_tags = gr.Dropdown(
sdk_tags.tolist(), label="Filter by SDK/Tags", multiselect=True
)
# create a gradio checkbox group for hardware
hardware = gr.CheckboxGroup(
df["hardware"].unique().tolist(), label="Filter by Hardware"
)
licenses = np.unique(np.concatenate(df["licenses"].values))
space_license = gr.CheckboxGroup(licenses.tolist(), label="Filter by license")
# If the models column is none make it an array of "none" so that things don't break
models_column_to_list = df["models"].apply(
lambda x: np.array(["None"]) if np.ndim(x) == 0 else x
)
# Now, flatten all arrays into one list
models_flattened = np.concatenate(models_column_to_list.values)
# Get unique strings
unique_models = np.unique(models_flattened)
models = gr.Dropdown(
unique_models.tolist(),
label="Search by Model",
multiselect=True,
)
# Do the same for datasets that we did for models
datasets_column_to_list = df["datasets"].apply(
lambda x: np.array(["None"]) if np.ndim(x) == 0 else x
)
flattened_datasets = np.concatenate(datasets_column_to_list.values)
unique_datasets = np.unique(flattened_datasets)
datasets = gr.Dropdown(
unique_datasets.tolist(),
label="Search by Dataset",
multiselect=True,
)
devMode = gr.Checkbox(value=False, label="DevMode Enabled")
clear = gr.ClearButton(components=[
emoji,
author,
hardware,
sdk_tags,
models,
datasets,
space_license
])
df = pd.DataFrame(
df[
[
"id",
"emoji",
"author",
"url",
"likes",
"hardware",
"sdk_tags",
"models",
"datasets",
"licenses",
"r_sdk_tags",
"r_models",
"r_datasets",
"r_licenses",
]
]
)
gr.DataFrame(
filtered_df,
inputs=[
emoji,
likes,
author,
hardware,
sdk_tags,
models,
datasets,
space_license,
],
datatype="html",
wrap=True,
column_widths=["25%", "5%", "25%", "25%", "20%"]
)
demo.launch()
|