|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from transformers import pipeline, VitsModel, AutoTokenizer, AutoTokenizer |
|
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
translation_models = { |
|
"en": "Helsinki-NLP/opus-mt-en-es", |
|
"fr": "Helsinki-NLP/opus-mt-fr-es", |
|
"de": "Helsinki-NLP/opus-mt-de-es", |
|
"it": "Helsinki-NLP/opus-mt-it-es", |
|
"pt": "Helsinki-NLP/opus-mt-pt-es", |
|
"nl": "Helsinki-NLP/opus-mt-nl-es", |
|
"fi": "Helsinki-NLP/opus-mt-fi-es", |
|
"sv": "Helsinki-NLP/opus-mt-sv-es", |
|
"da": "Helsinki-NLP/opus-mt-da-es", |
|
"no": "Helsinki-NLP/opus-mt-no-es", |
|
"ru": "Helsinki-NLP/opus-mt-ru-es", |
|
"pl": "Helsinki-NLP/opus-mt-pl-es", |
|
"cs": "Helsinki-NLP/opus-mt-cs-es", |
|
"tr": "Helsinki-NLP/opus-mt-tr-es", |
|
"zh": "Helsinki-NLP/opus-mt-zh-es", |
|
"ja": "Helsinki-NLP/opus-mt-ja-es", |
|
"ar": "Helsinki-NLP/opus-mt-ar-es", |
|
"ro": "Helsinki-NLP/opus-mt-ro-es", |
|
"el": "Helsinki-NLP/opus-mt-el-es", |
|
"bg": "Helsinki-NLP/opus-mt-bg-es", |
|
"uk": "Helsinki-NLP/opus-mt-uk-es", |
|
"he": "Helsinki-NLP/opus-mt-he-es", |
|
"lt": "Helsinki-NLP/opus-mt-lt-es", |
|
"et": "Helsinki-NLP/opus-mt-et-es", |
|
"hr": "Helsinki-NLP/opus-mt-hr-es", |
|
"hu": "Helsinki-NLP/opus-mt-hu-es", |
|
"lv": "Helsinki-NLP/opus-mt-lv-es", |
|
"sl": "Helsinki-NLP/opus-mt-sl-es", |
|
"sk": "Helsinki-NLP/opus-mt-sk-es", |
|
"sr": "Helsinki-NLP/opus-mt-sr-es", |
|
"fa": "Helsinki-NLP/opus-mt-fa-es", |
|
} |
|
|
|
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) |
|
|
|
|
|
|
|
|
|
|
|
model = SpeechT5ForTextToSpeech.from_pretrained( |
|
"juangtzi/speecht5_finetuned_voxpopuli_es" |
|
) |
|
checkpoint = "microsoft/speecht5_tts" |
|
processor = SpeechT5Processor.from_pretrained(checkpoint) |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
speaker_embeddings2 = np.load('speaker_embeddings.npy') |
|
speaker_embeddings2 = torch.tensor(speaker_embeddings2) |
|
print(speaker_embeddings2) |
|
lang_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection") |
|
|
|
def language_detector(text): |
|
resultado = lang_detector(text) |
|
idioma_detectado = resultado[0]['label'] |
|
print(idioma_detectado) |
|
return idioma_detectado |
|
|
|
def translate(audio): |
|
transcribe = asr_pipe(audio, max_new_tokens=256) |
|
|
|
codigo_idioma = language_detector(transcribe['text']) |
|
|
|
if codigo_idioma in translation_models: |
|
translator = pipeline("translation", model=translation_models[codigo_idioma]) |
|
traduccion = translator(transcribe['text']) |
|
else: |
|
transcribe = transcribe['text'] |
|
print(f"No hay un modelo de traducción disponible para el idioma detectado {codigo_idioma}") |
|
return transcribe |
|
|
|
return traduccion |
|
|
|
def synthesise(text): |
|
if isinstance(text, list): |
|
text = text[0]['translation_text'] |
|
else: |
|
text = text |
|
print(text) |
|
inputs = processor(text, return_tensors="pt") |
|
output = model.generate_speech(inputs["input_ids"], speaker_embeddings2, vocoder=vocoder) |
|
return output |
|
|
|
def speech_to_speech_translation(audio): |
|
translated_text = translate(audio) |
|
synthesised_speech = synthesise(translated_text) |
|
audio_data = synthesised_speech.cpu().numpy() |
|
audio_data = np.squeeze(audio_data) |
|
audio_data = audio_data / np.max(np.abs(audio_data)) |
|
sample_rate = 16000 |
|
return (sample_rate, audio_data) |
|
|
|
title = "Cascaded STST" |
|
description = """ |
|
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Spanish. |
|
|
|
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") |
|
""" |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(sources="microphone", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
title=title, |
|
description=description, |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(sources="upload", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
examples=[["./example.wav"]], |
|
title=title, |
|
description=description, |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
demo.launch() |
|
|