Update app.py
Browse files
app.py
CHANGED
@@ -17,24 +17,35 @@ generation_config.forced_decoder_ids
|
|
17 |
tokenizer.decode(generation_config.forced_decoder_ids[1][1])
|
18 |
|
19 |
|
20 |
-
|
21 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-medium", device=device)
|
22 |
|
|
|
|
|
|
|
23 |
#vist_model = VitsModel.from_pretrained("facebook/mms-tts-spa")
|
24 |
#vist_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa")
|
25 |
|
|
|
26 |
|
27 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(
|
28 |
-
|
29 |
-
)
|
30 |
-
checkpoint = "microsoft/speecht5_tts"
|
31 |
-
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
32 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
speaker_embeddings2 = np.load('speaker_embeddings.npy')
|
35 |
-
speaker_embeddings2 = torch.tensor(speaker_embeddings2)
|
36 |
-
print(speaker_embeddings2)
|
37 |
-
lang_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
|
38 |
|
39 |
def language_detector(text):
|
40 |
resultado = lang_detector(text)
|
@@ -47,19 +58,32 @@ def translate(audio):
|
|
47 |
print(outputs["text"])
|
48 |
return outputs["text"]
|
49 |
|
|
|
50 |
def synthesise(text):
|
51 |
-
inputs = processor(text=text,
|
52 |
-
|
53 |
-
return
|
54 |
|
55 |
def speech_to_speech_translation(audio):
|
56 |
translated_text = translate(audio)
|
57 |
synthesised_speech = synthesise(translated_text)
|
58 |
-
audio_data = synthesised_speech.cpu().numpy()
|
59 |
-
audio_data = np.squeeze(audio_data)
|
60 |
-
audio_data = audio_data / np.max(np.abs(audio_data))
|
61 |
sample_rate = 16000
|
62 |
-
return (sample_rate,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
title = "Cascaded STST"
|
65 |
description = """
|
|
|
17 |
tokenizer.decode(generation_config.forced_decoder_ids[1][1])
|
18 |
|
19 |
|
|
|
20 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-medium", device=device)
|
21 |
|
22 |
+
|
23 |
+
# ---------------- Speech generator mms-tts-spa --------------------------#
|
24 |
+
|
25 |
#vist_model = VitsModel.from_pretrained("facebook/mms-tts-spa")
|
26 |
#vist_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa")
|
27 |
|
28 |
+
# ---------------- Speech generator specht5_tts --------------------------#
|
29 |
|
30 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained(
|
31 |
+
# "juangtzi/speecht5_finetuned_voxpopuli_es"
|
32 |
+
# )
|
33 |
+
# checkpoint = "microsoft/speecht5_tts"
|
34 |
+
# processor = SpeechT5Processor.from_pretrained(checkpoint)
|
35 |
+
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
36 |
+
|
37 |
+
# speaker_embeddings2 = np.load('speaker_embeddings.npy')
|
38 |
+
# speaker_embeddings2 = torch.tensor(speaker_embeddings2)
|
39 |
+
# print(speaker_embeddings2)
|
40 |
+
# lang_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
|
41 |
+
|
42 |
+
# ---------------- Speech generator bark--------------------------#
|
43 |
+
|
44 |
+
from transformers import BarkModel, BarkProcessor
|
45 |
+
|
46 |
+
model = BarkModel.from_pretrained("suno/bark-small")
|
47 |
+
processor = BarkProcessor.from_pretrained("suno/bark-small")
|
48 |
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def language_detector(text):
|
51 |
resultado = lang_detector(text)
|
|
|
58 |
print(outputs["text"])
|
59 |
return outputs["text"]
|
60 |
|
61 |
+
|
62 |
def synthesise(text):
|
63 |
+
inputs = processor(text=text, voice_preset="v2/es_speaker_8")
|
64 |
+
speech_output = model.generate(**inputs).cpu().numpy()
|
65 |
+
return speech_output
|
66 |
|
67 |
def speech_to_speech_translation(audio):
|
68 |
translated_text = translate(audio)
|
69 |
synthesised_speech = synthesise(translated_text)
|
|
|
|
|
|
|
70 |
sample_rate = 16000
|
71 |
+
return (sample_rate, synthesised_speech)
|
72 |
+
|
73 |
+
|
74 |
+
# def synthesise(text): speecht5_tts
|
75 |
+
# inputs = processor(text=text, return_tensors="pt")
|
76 |
+
# output = model.generate_speech(inputs["input_ids"], speaker_embeddings2, vocoder=vocoder)
|
77 |
+
# return output
|
78 |
+
|
79 |
+
# def speech_to_speech_translation(audio): speecht5_tts
|
80 |
+
# translated_text = translate(audio)
|
81 |
+
# synthesised_speech = synthesise(translated_text)
|
82 |
+
# audio_data = synthesised_speech.cpu().numpy()
|
83 |
+
# audio_data = np.squeeze(audio_data)
|
84 |
+
# audio_data = audio_data / np.max(np.abs(audio_data))
|
85 |
+
# sample_rate = 16000
|
86 |
+
# return (sample_rate, audio_data)
|
87 |
|
88 |
title = "Cascaded STST"
|
89 |
description = """
|