juangtzi commited on
Commit
ea70de0
·
verified ·
1 Parent(s): 60a2b5b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -7
app.py CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
2
  import numpy as np
3
  import torch
4
  from transformers import pipeline, VitsModel, AutoTokenizer, AutoTokenizer
 
5
 
6
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
7
 
@@ -42,8 +43,19 @@ translation_models = {
42
 
43
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
44
 
45
- vist_model = VitsModel.from_pretrained("facebook/mms-tts-spa")
46
- vist_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa")
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  lang_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
49
 
@@ -73,16 +85,18 @@ def synthesise(text):
73
  else:
74
  text = text
75
  print(text)
76
- inputs = vist_tokenizer(text, return_tensors="pt")
77
- with torch.no_grad():
78
- output = vist_model(**inputs).waveform[0]
79
  return output
80
 
81
  def speech_to_speech_translation(audio):
82
  translated_text = translate(audio)
83
  synthesised_speech = synthesise(translated_text)
84
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
85
- return 16000, synthesised_speech
 
 
 
86
 
87
  title = "Cascaded STST"
88
  description = """
 
2
  import numpy as np
3
  import torch
4
  from transformers import pipeline, VitsModel, AutoTokenizer, AutoTokenizer
5
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor
6
 
7
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
8
 
 
43
 
44
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
45
 
46
+ #vist_model = VitsModel.from_pretrained("facebook/mms-tts-spa")
47
+ #vist_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa")
48
+
49
+
50
+ model = SpeechT5ForTextToSpeech.from_pretrained(
51
+ "juangtzi/speecht5_finetuned_voxpopuli_es"
52
+ )
53
+ checkpoint = "microsoft/speecht5_tts"
54
+ processor = SpeechT5Processor.from_pretrained(checkpoint)
55
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
56
+
57
+ speaker_embeddings2 = np.load('speaker_embeddings.npy')
58
+ speaker_embeddings2 = torch.tensor(speaker_embeddings2)
59
 
60
  lang_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
61
 
 
85
  else:
86
  text = text
87
  print(text)
88
+ inputs = processor(text, return_tensors="pt")
89
+ output = model.generate_speech(inputs["input_ids"], speaker_embeddings2, vocoder=vocoder)
 
90
  return output
91
 
92
  def speech_to_speech_translation(audio):
93
  translated_text = translate(audio)
94
  synthesised_speech = synthesise(translated_text)
95
+ audio_data = synthesised_speech.cpu().numpy()
96
+ audio_data = np.squeeze(audio_data)
97
+ audio_data = audio_data / np.max(np.abs(audio_data))
98
+ sample_rate = 16000
99
+ return (sample_rate, audio_data)
100
 
101
  title = "Cascaded STST"
102
  description = """