juliaannjose's picture
patent classifier code
2d5fb99
raw
history blame
1.36 kB
import streamlit as st
from transformers import pipeline
from datasets import load_dataset, Dataset, DatasetDict
# load the dataset and
# use the patent number, abstract and claim columns for UI
dataset_dict = load_dataset(
"HUPD/hupd",
name="sample",
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
icpr_label=None,
train_filing_start_date="2016-01-01",
train_filing_end_date="2016-01-21",
val_filing_start_date="2016-01-22",
val_filing_end_date="2016-01-31",
)
# widget for selecting our finetuned langugae model
language_model_path = "juliaannjose/finetuned_model"
# pass the model to transformers pipeline - model selection component.
classifier_model = pipeline(model=language_model_path)
# drop down menu with patent numbers
_patent_id = st.selectbox(
"Select the Patent Number",
dataset_dict["train"]["patent_number"],
)
# get abstract and claim corresponding to this patent id
_abstract = dataset_dict["train"][["patent_number"] == _patent_id]["abstract"]
_claim = dataset_dict["train"][["patent_number"] == _patent_id]["claim"]
# display abstract and claim
st.write(_abstract)
st.write(_claim)
# when submit button clicked, run the model and get result
if st.button("Submit"):
results = classifier_model([_abstract + _claim])
st.write(results)