akki2825's picture
update
049fb07
from deepspeech import Model
import gradio as gr
import numpy as np
import urllib.request
import wave
import subprocess
import sys
import shlex
from shlex import quote
model_file_path = "deepspeech-0.7.3-models.pbmm"
lm_file_path = "deepspeech-0.7.3-models.scorer"
url = "https://github.com/mozilla/DeepSpeech/releases/download/v0.7.3/"
urllib.request.urlretrieve(url + model_file_path, filename=model_file_path)
urllib.request.urlretrieve(url + lm_file_path, filename=lm_file_path)
beam_width = 100
lm_alpha = 0.93
lm_beta = 1.18
model = Model(model_file_path)
model.enableExternalScorer(lm_file_path)
model.setScorerAlphaBeta(lm_alpha, lm_beta)
model.setBeamWidth(beam_width)
def convert_samplerate(audio_path, desired_sample_rate):
sox_cmd = 'sox {} --type raw --bits 16 --channels 1 --rate {} --encoding signed-integer --endian little --compression 0.0 --no-dither - '.format(quote(audio_path), desired_sample_rate)
try:
output = subprocess.check_output(shlex.split(sox_cmd), stderr=subprocess.PIPE)
except subprocess.CalledProcessError as e:
raise RuntimeError('SoX returned non-zero status: {}'.format(e.stderr))
except OSError as e:
raise OSError(e.errno, 'SoX not found, use {}hz files or install it: {}'.format(desired_sample_rate, e.strerror))
return desired_sample_rate, np.frombuffer(output, np.int16)
def transcribe(audio_file):
desired_sample_rate = model.sampleRate()
fin = wave.open(audio_file, 'rb')
fs_orig = fin.getframerate()
if fs_orig != desired_sample_rate:
print('Warning: original sample rate ({}) is different than {}hz. Resampling might produce erratic speech recognition.'.format(fs_orig, desired_sample_rate), file=sys.stderr)
fs_new, audio = convert_samplerate(audio_file, desired_sample_rate)
else:
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
audio_length = fin.getnframes() * (1/fs_orig)
fin.close()
text = model.stt(audio)
return text
demo = gr.Interface(
transcribe,
# [gr.Audio(source="microphone", streaming=True), "state"],
gr.Audio(label="Upload Audio File", source="upload", type="filepath"),
outputs=gr.Textbox(label="Transcript")
)
if __name__ == "__main__":
demo.launch()