Spaces:
Runtime error
Runtime error
Commit
·
69aedd2
1
Parent(s):
ff74936
adfdaf
Browse files
app.py
CHANGED
@@ -64,10 +64,12 @@
|
|
64 |
# # Launch the app
|
65 |
# if __name__ == "__main__":
|
66 |
# interface.launch()
|
67 |
-
|
|
|
|
|
68 |
import py_vncorenlp
|
69 |
-
py_vncorenlp.download_model(save_dir='
|
70 |
-
rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir='
|
71 |
|
72 |
query = "Trường UIT là gì?"
|
73 |
sentences = [
|
@@ -83,3 +85,34 @@ tokenized_pairs = [[tokenized_query, sent] for sent in tokenized_sentences]
|
|
83 |
|
84 |
MODEL_ID = 'itdainb/PhoRanker'
|
85 |
MAX_LENGTH = 256
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# # Launch the app
|
65 |
# if __name__ == "__main__":
|
66 |
# interface.launch()
|
67 |
+
from sentence_transformers import CrossEncoder
|
68 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
69 |
+
import torch
|
70 |
import py_vncorenlp
|
71 |
+
py_vncorenlp.download_model(save_dir='/absolute/path/to/vncorenlp')
|
72 |
+
rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir='/absolute/path/to/vncorenlp')
|
73 |
|
74 |
query = "Trường UIT là gì?"
|
75 |
sentences = [
|
|
|
85 |
|
86 |
MODEL_ID = 'itdainb/PhoRanker'
|
87 |
MAX_LENGTH = 256
|
88 |
+
|
89 |
+
model = CrossEncoder(MODEL_ID, max_length=MAX_LENGTH)
|
90 |
+
|
91 |
+
# For fp16 usage
|
92 |
+
model.model.half()
|
93 |
+
|
94 |
+
scores = model.predict(tokenized_pairs)
|
95 |
+
|
96 |
+
# 0.982, 0.2444, 0.9253
|
97 |
+
print(scores)
|
98 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
99 |
+
import torch
|
100 |
+
|
101 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
103 |
+
|
104 |
+
# For fp16 usage
|
105 |
+
model.half()
|
106 |
+
|
107 |
+
features = tokenizer(tokenized_pairs, padding=True, truncation="longest_first", return_tensors="pt", max_length=MAX_LENGTH)
|
108 |
+
|
109 |
+
model.eval()
|
110 |
+
with torch.no_grad():
|
111 |
+
model_predictions = model(**features, return_dict=True)
|
112 |
+
|
113 |
+
logits = model_predictions.logits
|
114 |
+
logits = torch.nn.Sigmoid()(logits)
|
115 |
+
scores = [logit[0] for logit in logits]
|
116 |
+
|
117 |
+
# 0.9819, 0.2444, 0.9253
|
118 |
+
print(scores)
|