chidung7271 commited on
Commit
69aedd2
·
1 Parent(s): ff74936
Files changed (1) hide show
  1. app.py +36 -3
app.py CHANGED
@@ -64,10 +64,12 @@
64
  # # Launch the app
65
  # if __name__ == "__main__":
66
  # interface.launch()
67
-
 
 
68
  import py_vncorenlp
69
- py_vncorenlp.download_model(save_dir='./absolute/path/to/vncorenlp')
70
- rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir='./absolute/path/to/vncorenlp')
71
 
72
  query = "Trường UIT là gì?"
73
  sentences = [
@@ -83,3 +85,34 @@ tokenized_pairs = [[tokenized_query, sent] for sent in tokenized_sentences]
83
 
84
  MODEL_ID = 'itdainb/PhoRanker'
85
  MAX_LENGTH = 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  # # Launch the app
65
  # if __name__ == "__main__":
66
  # interface.launch()
67
+ from sentence_transformers import CrossEncoder
68
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
69
+ import torch
70
  import py_vncorenlp
71
+ py_vncorenlp.download_model(save_dir='/absolute/path/to/vncorenlp')
72
+ rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir='/absolute/path/to/vncorenlp')
73
 
74
  query = "Trường UIT là gì?"
75
  sentences = [
 
85
 
86
  MODEL_ID = 'itdainb/PhoRanker'
87
  MAX_LENGTH = 256
88
+
89
+ model = CrossEncoder(MODEL_ID, max_length=MAX_LENGTH)
90
+
91
+ # For fp16 usage
92
+ model.model.half()
93
+
94
+ scores = model.predict(tokenized_pairs)
95
+
96
+ # 0.982, 0.2444, 0.9253
97
+ print(scores)
98
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
99
+ import torch
100
+
101
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
102
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
103
+
104
+ # For fp16 usage
105
+ model.half()
106
+
107
+ features = tokenizer(tokenized_pairs, padding=True, truncation="longest_first", return_tensors="pt", max_length=MAX_LENGTH)
108
+
109
+ model.eval()
110
+ with torch.no_grad():
111
+ model_predictions = model(**features, return_dict=True)
112
+
113
+ logits = model_predictions.logits
114
+ logits = torch.nn.Sigmoid()(logits)
115
+ scores = [logit[0] for logit in logits]
116
+
117
+ # 0.9819, 0.2444, 0.9253
118
+ print(scores)