Siyuan Feng
feat: clean pdf fitz text
ab879ca
raw
history blame
12.1 kB
import markdown, mdtex2html, threading, importlib, traceback
from show_math import convert as convert_math
from functools import wraps
def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[], sys_prompt=''):
"""
调用简单的predict_no_ui接口,但是依然保留了些许界面心跳功能,当对话太长时,会自动采用二分法截断
"""
import time
from predict import predict_no_ui
from toolbox import get_conf
TIMEOUT_SECONDS, MAX_RETRY = get_conf('TIMEOUT_SECONDS', 'MAX_RETRY')
# 多线程的时候,需要一个mutable结构在不同线程之间传递信息
# list就是最简单的mutable结构,我们第一个位置放gpt输出,第二个位置传递报错信息
mutable = [None, '']
# multi-threading worker
def mt(i_say, history):
while True:
try:
mutable[0] = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
break
except ConnectionAbortedError as e:
if len(history) > 0:
history = [his[len(his)//2:] for his in history if his is not None]
mutable[1] = 'Warning! History conversation is too long, cut into half. '
else:
i_say = i_say[:len(i_say)//2]
mutable[1] = 'Warning! Input file is too long, cut into half. '
except TimeoutError as e:
mutable[0] = '[Local Message] Failed with timeout.'
raise TimeoutError
# 创建新线程发出http请求
thread_name = threading.Thread(target=mt, args=(i_say, history)); thread_name.start()
# 原来的线程则负责持续更新UI,实现一个超时倒计时,并等待新线程的任务完成
cnt = 0
while thread_name.is_alive():
cnt += 1
chatbot[-1] = (i_say_show_user, f"[Local Message] {mutable[1]}waiting gpt response {cnt}/{TIMEOUT_SECONDS*2*(MAX_RETRY+1)}"+''.join(['.']*(cnt%4)))
yield chatbot, history, '正常'
time.sleep(1)
# 把gpt的输出从mutable中取出来
gpt_say = mutable[0]
if gpt_say=='[Local Message] Failed with timeout.': raise TimeoutError
return gpt_say
def write_results_to_file(history, file_name=None):
"""
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
"""
import os, time
if file_name is None:
# file_name = time.strftime("chatGPT分析报告%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md'
file_name = 'chatGPT分析报告' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md'
os.makedirs('./gpt_log/', exist_ok=True)
with open(f'./gpt_log/{file_name}', 'w', encoding = 'utf8') as f:
f.write('# chatGPT 分析报告\n')
for i, content in enumerate(history):
if i%2==0: f.write('## ')
f.write(content)
f.write('\n\n')
res = '以上材料已经被写入' + os.path.abspath(f'./gpt_log/{file_name}')
print(res)
return res
def regular_txt_to_markdown(text):
"""
将普通文本转换为Markdown格式的文本。
"""
text = text.replace('\n', '\n\n')
text = text.replace('\n\n\n', '\n\n')
text = text.replace('\n\n\n', '\n\n')
return text
def CatchException(f):
"""
装饰器函数,捕捉函数f中的异常并封装到一个生成器中返回,并显示到聊天当中。
"""
@wraps(f)
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
try:
yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
except Exception as e:
from check_proxy import check_proxy
from toolbox import get_conf
proxies, = get_conf('proxies')
tb_str = regular_txt_to_markdown(traceback.format_exc())
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 实验性函数调用出错: \n\n {tb_str} \n\n 当前代理可用性: \n\n {check_proxy(proxies)}")
yield chatbot, history, f'异常 {e}'
return decorated
def report_execption(chatbot, history, a, b):
"""
向chatbot中添加错误信息
"""
chatbot.append((a, b))
history.append(a); history.append(b)
def text_divide_paragraph(text):
"""
将文本按照段落分隔符分割开,生成带有段落标签的HTML代码。
"""
if '```' in text:
# careful input
return text
else:
# wtf input
lines = text.split("\n")
for i, line in enumerate(lines):
lines[i] = lines[i].replace(" ", " ")
text = "</br>".join(lines)
return text
def markdown_convertion(txt):
"""
将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。
"""
if ('$' in txt) and ('```' not in txt):
return markdown.markdown(txt,extensions=['fenced_code','tables']) + '<br><br>' + \
markdown.markdown(convert_math(txt, splitParagraphs=False),extensions=['fenced_code','tables'])
else:
return markdown.markdown(txt,extensions=['fenced_code','tables'])
def format_io(self, y):
"""
将输入和输出解析为HTML格式。将y中最后一项的输入部分段落化,并将输出部分的Markdown和数学公式转换为HTML格式。
"""
if y is None or y == []: return []
i_ask, gpt_reply = y[-1]
i_ask = text_divide_paragraph(i_ask) # 输入部分太自由,预处理一波
y[-1] = (
None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code','tables']),
None if gpt_reply is None else markdown_convertion(gpt_reply)
)
return y
def find_free_port():
"""
返回当前系统中可用的未使用端口。
"""
import socket
from contextlib import closing
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
s.bind(('', 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return s.getsockname()[1]
def extract_archive(file_path, dest_dir):
import zipfile
import tarfile
import os
# Get the file extension of the input file
file_extension = os.path.splitext(file_path)[1]
# Extract the archive based on its extension
if file_extension == '.zip':
with zipfile.ZipFile(file_path, 'r') as zipobj:
zipobj.extractall(path=dest_dir)
print("Successfully extracted zip archive to {}".format(dest_dir))
elif file_extension in ['.tar', '.gz', '.bz2']:
with tarfile.open(file_path, 'r:*') as tarobj:
tarobj.extractall(path=dest_dir)
print("Successfully extracted tar archive to {}".format(dest_dir))
else:
return
def find_recent_files(directory):
"""
me: find files that is created with in one minutes under a directory with python, write a function
gpt: here it is!
"""
import os
import time
current_time = time.time()
one_minute_ago = current_time - 60
recent_files = []
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if file_path.endswith('.log'): continue
created_time = os.path.getctime(file_path)
if created_time >= one_minute_ago:
if os.path.isdir(file_path): continue
recent_files.append(file_path)
return recent_files
def on_file_uploaded(files, chatbot, txt):
if len(files) == 0: return chatbot, txt
import shutil, os, time, glob
from toolbox import extract_archive
try: shutil.rmtree('./private_upload/')
except: pass
time_tag = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
os.makedirs(f'private_upload/{time_tag}', exist_ok=True)
for file in files:
file_origin_name = os.path.basename(file.orig_name)
shutil.copy(file.name, f'private_upload/{time_tag}/{file_origin_name}')
extract_archive(f'private_upload/{time_tag}/{file_origin_name}',
dest_dir=f'private_upload/{time_tag}/{file_origin_name}.extract')
moved_files = [fp for fp in glob.glob('private_upload/**/*', recursive=True)]
txt = f'private_upload/{time_tag}'
moved_files_str = '\t\n\n'.join(moved_files)
chatbot.append(['我上传了文件,请查收',
f'[Local Message] 收到以下文件: \n\n{moved_files_str}\n\n调用路径参数已自动修正到: \n\n{txt}\n\n现在您点击任意实验功能时,以上文件将被作为输入参数'])
return chatbot, txt
def on_report_generated(files, chatbot):
from toolbox import find_recent_files
report_files = find_recent_files('gpt_log')
if len(report_files) == 0: return report_files, chatbot
# files.extend(report_files)
chatbot.append(['汇总报告如何远程获取?', '汇总报告已经添加到右侧文件上传区,请查收。'])
return report_files, chatbot
def get_conf(*args):
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
res = []
for arg in args:
try: r = getattr(importlib.import_module('config_private'), arg)
except: r = getattr(importlib.import_module('config'), arg)
res.append(r)
# 在读取API_KEY时,检查一下是不是忘了改config
if arg=='API_KEY' and len(r) != 51:
assert False, "正确的API_KEY密钥是51位,请在config文件中修改API密钥, 添加海外代理之后再运行。" + \
"(如果您刚更新过代码,请确保旧版config_private文件中没有遗留任何新增键值)"
return res
def clear_line_break(txt):
txt = txt.replace('\n', ' ')
txt = txt.replace(' ', ' ')
txt = txt.replace(' ', ' ')
return txt
import re
import unicodedata
def is_paragraph_break(match):
"""
根据给定的匹配结果来判断换行符是否表示段落分隔。
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。
也可以根据之前的内容长度来判断段落是否已经足够长。
"""
prev_char, next_char = match.groups()
# 句子结束标志
sentence_endings = ".!?"
# 设定一个最小段落长度阈值
min_paragraph_length = 140
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
return "\n\n"
else:
return " "
def normalize_text(text):
"""
通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。
例如,将连字 "fi" 转换为 "f" 和 "i"。
"""
# 对文本进行归一化处理,分解连字
normalized_text = unicodedata.normalize("NFKD", text)
# 替换其他特殊字符
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
return cleaned_text
def clean_text(raw_text):
"""
对从 PDF 提取出的原始文本进行清洗和格式化处理。
1. 对原始文本进行归一化处理。
2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。
"""
# 对文本进行归一化处理
normalized_text = normalize_text(raw_text)
# 替换跨行的连词
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text)
# 根据前后相邻字符的特点,找到原文本中的换行符
newlines = re.compile(r'(\S)\n(\S)')
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text)
return final_text.strip()