Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
import transformers | |
import gradio as gr | |
from src.client import DistributedBloomForCausalLM | |
INITIAL_PEERS = ['/ip4/193.106.95.184/tcp/443/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs'] | |
import hivemind | |
dht1 = hivemind.DHT(start=True) | |
dht2 = hivemind.DHT(start=True, initial_peers=dht1.get_visible_maddrs()) | |
tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3") | |
#model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32) | |
def inference(text, seq_length=1): | |
#input_ids = tokenizer(text, return_tensors='pt')['input_ids'] | |
#with torch.inference_mode(), model.transformer.h.inference_session() as remote_transformer: | |
# for i in range(seq_length): | |
# h = model.transformer.word_embeddings(input_ids) | |
# h = model.transformer.word_embeddings_layernorm(h) | |
#import os; | |
#os.system("wget http://193.106.95.184/p2p-keygen") | |
#return text[::-1] + '\n' + '\n'.join(os.listdir('.')) | |
try: | |
dht3 = hivemind.DHT(start=True, initial_peers=INITIAL_PEERS) | |
assert dht1.store('key', text[::-1], hivemind.get_dht_time() + 999) | |
return repr(dht2.get('key')) | |
except Exception as e: | |
return repr(e) | |
iface = gr.Interface(fn=inference, inputs="text", outputs="text") | |
iface.launch() |