Spaces:
Runtime error
Runtime error
""" | |
PyTorch BLOOM model that implements several memory-efficient modes. | |
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b | |
See commit history for authorship. | |
""" | |
from typing import Tuple | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from hivemind import use_hivemind_log_handler | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, LayerNorm | |
from transformers.file_utils import (add_code_sample_docstrings, add_start_docstrings, | |
add_start_docstrings_to_model_forward) | |
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.models.bloom.configuration_bloom import BloomConfig | |
from transformers.utils import logging | |
from src.bloom.block import BloomBlock | |
use_hivemind_log_handler("in_root_logger") | |
logger = logging.get_logger(__file__) | |
_CHECKPOINT_FOR_DOC = "bigscience/Bloom" | |
_CONFIG_FOR_DOC = "BloomConfig" | |
_TOKENIZER_FOR_DOC = "BloomTokenizer" | |
class BloomPreTrainedModel(PreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = BloomConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["BloomBlock"] | |
def __init__(self, *inputs, **kwargs): | |
super().__init__(*inputs, **kwargs) | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, (nn.Linear)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, BloomModel): | |
module.gradient_checkpointing = value | |
BLOOM_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`MemoryEfficientBloomConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
BLOOM_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else | |
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input | |
sequence tokens in the vocabulary. | |
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | |
`input_ids`. | |
Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): | |
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
their past given to this model should not be passed as `input_ids` as they have already been computed. | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | |
`past_key_values`). | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class BloomModel(BloomPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
assert not config.slow_but_exact, "slow_but_exact mode was removed for code simplicity" | |
self.embed_dim = config.hidden_size | |
self.n_head = config.n_head | |
# Embedding + LN Embedding | |
# TODO: @dbaranchuk make efficient fp16 on cpu (convert only word_embeddings!) | |
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) # dtype=config.torch_dtype | |
self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
# Transformer blocks | |
self.h = nn.ModuleList([BloomBlock(config, layer_number=i) for i in range(config.num_hidden_layers)]) | |
# Final Layer Norm | |
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Forbid accumulate grads for embeddings and layernorm | |
self.set_requires_grad(False) | |
def get_input_embeddings(self): | |
return self.word_embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.word_embeddings = new_embeddings | |
def set_requires_grad(self, value): | |
for p in self.parameters(): | |
p.requires_grad = value | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
if position_ids is not None: | |
logger.warning("position_ids are ignored in this bloom implementation") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if past_key_values is None: | |
past_key_values = tuple([None] * len(self.h)) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_head x N x N | |
# head_mask has shape n_layer x batch x n_head x N x N | |
head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
hidden_states = self.word_embeddings_layernorm(inputs_embeds.float()) | |
output_shape = input_shape + (hidden_states.size(-1),) | |
presents = () if use_cache else None | |
all_self_attentions = () if output_attentions else None | |
all_hidden_states = () if output_hidden_states else None | |
# Compute alibi tensor: check build_alibi_tensor documentation | |
current_sequence_length = hidden_states.shape[1] | |
if past_key_values and past_key_values[0]: | |
current_sequence_length += past_key_values[0][0].shape[1] | |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, use_cache, output_attentions, alibi=None) | |
return custom_forward | |
outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
None, | |
attention_mask, | |
head_mask[i], | |
) | |
else: | |
outputs = block( | |
hidden_states, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask[i], | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
alibi=None, | |
) | |
hidden_states = outputs[0] | |
if use_cache is True: | |
presents = presents + (outputs[1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
# Add last hidden state | |
hidden_states = self.ln_f(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
hidden_states = hidden_states.view(output_shape) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class BloomForCausalLM(BloomPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = BloomModel(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.transformer.word_embeddings | |
def set_output_embeddings(self, new_embeddings): | |
self.transformer.word_embeddings.weight = new_embeddings.weight | |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): | |
# only last token for inputs_ids if past is defined in kwargs | |
if past: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
else: | |
position_ids = None | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
} | |
def forward(self, input_ids=None, labels=None, return_dict=None, **kwargs): | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer.forward(input_ids=input_ids, return_dict=return_dict, **kwargs) | |
word_embeddings = self.transformer.word_embeddings.weight | |
# Switch dtype in case word_embeddings are fp16/bf16 | |
hidden_states = transformer_outputs[0].to(word_embeddings.dtype) | |
lm_logits = F.linear(hidden_states, word_embeddings).float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: | |
""" | |
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) | |
for layer_past in past | |
) | |