Spaces:
Runtime error
Runtime error
"""Code for serving bloom blocks via hivemind-server""" | |
from typing import Sequence, Tuple | |
import torch | |
from hivemind.moe.server.module_backend import ModuleBackend | |
from hivemind.moe.server.task_pool import TaskPool | |
from src.bloom.from_pretrained import BloomBlock | |
from src.server.cache import MemoryCache | |
MAX_LENGTH = 2048 | |
class TransformerBackend(ModuleBackend): | |
"""A wrapper for BloomBlock that can process requests for bloom layer forward, forward_incremental, and backward""" | |
def __init__(self, *args, memory_cache: MemoryCache, **kwargs): | |
super().__init__(*args, **kwargs) | |
assert isinstance(self.module, BloomBlock) | |
self.memory_cache = memory_cache | |
for name, param in self.module.named_parameters(): | |
assert not param.requires_grad, f"Bloom layer parameters must not accumulate gradients, but {name} does" | |
for name, buf in self.module.named_buffers(): | |
assert not buf.requires_grad, f"Bloom layer parameters must not accumulate gradients, but {name} does" | |
self.inference_pool = TaskPool(self.inference_step, max_batch_size=1, name=f"{self.name}_inference") | |
def inference_step(self, cache_metadata: torch.IntTensor, *inputs: torch.Tensor) -> Tuple[torch.Tensor, ...]: | |
with torch.inference_mode(): | |
attention_cache_handle = int(cache_metadata[0, 0].item()) | |
prefix_length = int(cache_metadata[0, 1].item()) | |
hidden_states = inputs[0] # todo: in future, it would be best to support attention mask here | |
assert ( | |
hidden_states.ndim == 3 | |
), "expected hidden states to be 3-dimensional: [batch_size, seq_len, hid_size]" | |
with self.memory_cache.use_cache(attention_cache_handle) as cache: | |
assert isinstance(self.module, BloomBlock) and cache.shape[0] == 2 and cache.ndim == 5 | |
layer_past = past_k, past_v = cache[0, :, :prefix_length], cache[1, :, :prefix_length] | |
print("METADATA:", cache_metadata, past_k.shape, past_v.shape) | |
hidden_states, (new_k, new_v) = self.module.forward( | |
hidden_states, layer_past=layer_past, use_cache=True | |
) | |
# todo remove these asserts once we pass all tests | |
new_length = new_v.shape[1] | |
assert new_length > prefix_length | |
assert new_k.shape[0] == past_k.shape[0] and new_v.shape[0] == past_v.shape[0] | |
assert new_k.shape[1] == new_length and new_v.shape[1] == new_length | |
assert new_k.shape[2:] == past_k.shape[2:] and new_v.shape[2:] == past_v.shape[2:] | |
assert torch.allclose(new_v[:, : past_v.shape[1]], past_v) | |
assert torch.allclose(new_k[:, : past_k.shape[1]], past_k) | |
cache[0, :, prefix_length:new_length, :] = new_k[:, prefix_length:new_length] | |
cache[1, :, prefix_length:new_length, :] = new_v[:, prefix_length:new_length] | |
return (hidden_states,) | |
def get_pools(self) -> Sequence[TaskPool]: | |
return self.forward_pool, self.backward_pool, self.inference_pool | |