Spaces:
Runtime error
Runtime error
Commit
·
21c36e4
1
Parent(s):
dbf1289
Update app.py
Browse files
app.py
CHANGED
@@ -8,24 +8,15 @@ from src.client import DistributedBloomForCausalLM
|
|
8 |
INITIAL_PEERS = ['/ip6/2a0b:4880::a242:3fff:fe3a:2ae1/tcp/21338/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs', '/ip6/2a0b:4880::a242:3fff:fe3a:2ae1/udp/21338/quic/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs']
|
9 |
|
10 |
tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
|
11 |
-
model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32)
|
12 |
|
13 |
def inference(text, seq_length=1):
|
14 |
-
input_ids = tokenizer(text, return_tensors='pt')['input_ids']
|
15 |
-
with torch.inference_mode(), model.transformer.h.inference_session() as remote_transformer:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
h = remote_transformer.step(h) # note [yozh]: this line currently freezes for 10 seconds first time only, its gonna be fixed in the nearest PR
|
21 |
-
|
22 |
-
h = model.transformer.ln_f(h)
|
23 |
-
h = F.linear(h, weight=model.transformer.word_embeddings.weight) # note: this line takes a while, will also be fixed
|
24 |
-
next_token_ix = torch.multinomial((h[0, -1] / 0.8).softmax(-1), 1)
|
25 |
-
|
26 |
-
# print(end=tokenizer.decode(next_token_ix.item()))
|
27 |
-
input_ids = next_token_ix.view(1, 1)
|
28 |
-
return tokenizer.decode(input_ids.item())
|
29 |
|
30 |
iface = gr.Interface(fn=inference, inputs="text", outputs="text")
|
31 |
iface.launch()
|
|
|
8 |
INITIAL_PEERS = ['/ip6/2a0b:4880::a242:3fff:fe3a:2ae1/tcp/21338/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs', '/ip6/2a0b:4880::a242:3fff:fe3a:2ae1/udp/21338/quic/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs']
|
9 |
|
10 |
tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
|
11 |
+
#model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32)
|
12 |
|
13 |
def inference(text, seq_length=1):
|
14 |
+
#input_ids = tokenizer(text, return_tensors='pt')['input_ids']
|
15 |
+
#with torch.inference_mode(), model.transformer.h.inference_session() as remote_transformer:
|
16 |
+
# for i in range(seq_length):
|
17 |
+
# h = model.transformer.word_embeddings(input_ids)
|
18 |
+
# h = model.transformer.word_embeddings_layernorm(h)
|
19 |
+
return text[::-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
iface = gr.Interface(fn=inference, inputs="text", outputs="text")
|
22 |
iface.launch()
|