justheuristic commited on
Commit
21c36e4
·
1 Parent(s): dbf1289

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -16
app.py CHANGED
@@ -8,24 +8,15 @@ from src.client import DistributedBloomForCausalLM
8
  INITIAL_PEERS = ['/ip6/2a0b:4880::a242:3fff:fe3a:2ae1/tcp/21338/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs', '/ip6/2a0b:4880::a242:3fff:fe3a:2ae1/udp/21338/quic/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs']
9
 
10
  tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
11
- model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32)
12
 
13
  def inference(text, seq_length=1):
14
- input_ids = tokenizer(text, return_tensors='pt')['input_ids']
15
- with torch.inference_mode(), model.transformer.h.inference_session() as remote_transformer:
16
- for i in range(seq_length):
17
- h = model.transformer.word_embeddings(input_ids)
18
- h = model.transformer.word_embeddings_layernorm(h)
19
-
20
- h = remote_transformer.step(h) # note [yozh]: this line currently freezes for 10 seconds first time only, its gonna be fixed in the nearest PR
21
-
22
- h = model.transformer.ln_f(h)
23
- h = F.linear(h, weight=model.transformer.word_embeddings.weight) # note: this line takes a while, will also be fixed
24
- next_token_ix = torch.multinomial((h[0, -1] / 0.8).softmax(-1), 1)
25
-
26
- # print(end=tokenizer.decode(next_token_ix.item()))
27
- input_ids = next_token_ix.view(1, 1)
28
- return tokenizer.decode(input_ids.item())
29
 
30
  iface = gr.Interface(fn=inference, inputs="text", outputs="text")
31
  iface.launch()
 
8
  INITIAL_PEERS = ['/ip6/2a0b:4880::a242:3fff:fe3a:2ae1/tcp/21338/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs', '/ip6/2a0b:4880::a242:3fff:fe3a:2ae1/udp/21338/quic/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs']
9
 
10
  tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
11
+ #model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32)
12
 
13
  def inference(text, seq_length=1):
14
+ #input_ids = tokenizer(text, return_tensors='pt')['input_ids']
15
+ #with torch.inference_mode(), model.transformer.h.inference_session() as remote_transformer:
16
+ # for i in range(seq_length):
17
+ # h = model.transformer.word_embeddings(input_ids)
18
+ # h = model.transformer.word_embeddings_layernorm(h)
19
+ return text[::-1]
 
 
 
 
 
 
 
 
 
20
 
21
  iface = gr.Interface(fn=inference, inputs="text", outputs="text")
22
  iface.launch()