Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,171 +1,171 @@
|
|
1 |
-
from typing import Tuple, Optional
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
import spaces
|
5 |
-
import supervision as sv
|
6 |
-
import torch
|
7 |
-
from PIL import Image
|
8 |
-
from gradio_image_prompter import ImagePrompter
|
9 |
-
|
10 |
-
from utils.annotate import annotate_with_boxes
|
11 |
-
from utils.models import load_models, run_inference, CHECKPOINTS, \
|
12 |
-
pre_process_region_task_input, post_process_region_output
|
13 |
-
from utils.tasks import TASK_NAMES, TASKS, OBJECT_DETECTION_TASK_NAME, \
|
14 |
-
CAPTION_TASK_NAME, DETAILED_CAPTION_TASK_NAME, \
|
15 |
-
MORE_DETAILED_CAPTION_TASK_NAME, OCR_WITH_REGION_TASK_NAME, OCR_TASK_NAME, \
|
16 |
-
IMAGE_INPUT_TASK_NAMES, IMAGE_PROMPTER_INPUT_TASK_NAMES, IMAGE_OUTPUT_TASK_NAMES, \
|
17 |
-
TEXTBOX_OUTPUT_TASK_NAMES, IMAGE_TO_IMAGE_TASK_NAMES, IMAGE_TO_TEXT_TASK_NAMES, \
|
18 |
-
IMAGE_PROMPT_TO_IMAGE_TASK_NAMES, REGION_PROPOSAL_TASK_NAME, \
|
19 |
-
DENSE_REGION_CAPTION_TASK_NAME
|
20 |
-
|
21 |
-
MARKDOWN = """
|
22 |
-
# Florence-2 🔥
|
23 |
-
|
24 |
-
Florence-2 is a lightweight vision-language model open-sourced by Microsoft under the
|
25 |
-
MIT license. The model demonstrates strong zero-shot and fine-tuning capabilities
|
26 |
-
across tasks such as captioning, object detection, grounding, and segmentation.
|
27 |
-
The model takes images and task prompts as input, generating the desired results in
|
28 |
-
text format. It uses a DaViT vision encoder to convert images into visual token
|
29 |
-
embeddings. These are then concatenated with BERT-generated text embeddings and
|
30 |
-
processed by a transformer-based multi-modal encoder-decoder to generate the response.
|
31 |
-
"""
|
32 |
-
EXAMPLES = [
|
33 |
-
["microsoft/Florence-2-large-ft", OBJECT_DETECTION_TASK_NAME, "https://
|
34 |
-
["microsoft/Florence-2-large-ft", REGION_PROPOSAL_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
35 |
-
["microsoft/Florence-2-large-ft", DENSE_REGION_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
36 |
-
["microsoft/Florence-2-large-ft", CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
37 |
-
["microsoft/Florence-2-large-ft", DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
38 |
-
["microsoft/Florence-2-large-ft", MORE_DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
39 |
-
["microsoft/Florence-2-large-ft", OCR_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
40 |
-
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
41 |
-
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
42 |
-
]
|
43 |
-
|
44 |
-
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
-
DEVICE = "cuda"
|
46 |
-
MODELS, PROCESSORS = load_models(DEVICE)
|
47 |
-
|
48 |
-
|
49 |
-
@spaces.GPU
|
50 |
-
def process(
|
51 |
-
checkpoint_dropdown,
|
52 |
-
task_dropdown,
|
53 |
-
image_input,
|
54 |
-
image_prompter_input
|
55 |
-
) -> Tuple[Optional[Image.Image], Optional[str]]:
|
56 |
-
model = MODELS[checkpoint_dropdown]
|
57 |
-
processor = PROCESSORS[checkpoint_dropdown]
|
58 |
-
task = TASKS[task_dropdown]
|
59 |
-
|
60 |
-
if task_dropdown in IMAGE_TO_IMAGE_TASK_NAMES:
|
61 |
-
_, response = run_inference(
|
62 |
-
model, processor, DEVICE, image_input, task)
|
63 |
-
detections = sv.Detections.from_lmm(
|
64 |
-
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
65 |
-
return annotate_with_boxes(image_input, detections), None
|
66 |
-
|
67 |
-
elif task_dropdown in IMAGE_TO_TEXT_TASK_NAMES:
|
68 |
-
_, response = run_inference(
|
69 |
-
model, processor, DEVICE, image_input, task)
|
70 |
-
return None, response[task]
|
71 |
-
|
72 |
-
elif task_dropdown in IMAGE_PROMPT_TO_IMAGE_TASK_NAMES:
|
73 |
-
detections_list = []
|
74 |
-
|
75 |
-
print(image_prompter_input)
|
76 |
-
|
77 |
-
image_input = image_prompter_input["image"]
|
78 |
-
for prompt in image_prompter_input["points"]:
|
79 |
-
text = pre_process_region_task_input(
|
80 |
-
prompt=prompt,
|
81 |
-
resolution_wh=image_input.size
|
82 |
-
)
|
83 |
-
_, response = run_inference(
|
84 |
-
model, processor, DEVICE, image_input, task, text)
|
85 |
-
detections = sv.Detections.from_lmm(
|
86 |
-
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
87 |
-
detections_list.append(detections)
|
88 |
-
detections = sv.Detections.merge(detections_list=detections_list)
|
89 |
-
detections = post_process_region_output(
|
90 |
-
detections=detections, resolution_wh=image_input.size)
|
91 |
-
|
92 |
-
return annotate_with_boxes(image_input, detections), None
|
93 |
-
|
94 |
-
|
95 |
-
with gr.Blocks() as demo:
|
96 |
-
gr.Markdown(MARKDOWN)
|
97 |
-
with gr.Row():
|
98 |
-
checkpoint_dropdown_component = gr.Dropdown(
|
99 |
-
choices=CHECKPOINTS,
|
100 |
-
value=CHECKPOINTS[0],
|
101 |
-
label="Model", info="Select a Florence 2 model to use.",
|
102 |
-
interactive=True
|
103 |
-
)
|
104 |
-
task_dropdown_component = gr.Dropdown(
|
105 |
-
choices=TASK_NAMES,
|
106 |
-
value=TASK_NAMES[0],
|
107 |
-
label="Task", info="Select a task to perform with the model.",
|
108 |
-
interactive=True
|
109 |
-
)
|
110 |
-
|
111 |
-
with gr.Row():
|
112 |
-
with gr.Column():
|
113 |
-
image_input_component = gr.Image(
|
114 |
-
type='pil', label='Upload image')
|
115 |
-
image_prompter_input_component = ImagePrompter(
|
116 |
-
type='pil', label='Image prompt', visible=False)
|
117 |
-
submit_button_component = gr.Button(value='Submit', variant='primary')
|
118 |
-
|
119 |
-
with gr.Column():
|
120 |
-
image_output_component = gr.Image(type='pil', label='Image Output')
|
121 |
-
text_output_component = gr.Textbox(label='Caption Output', visible=False)
|
122 |
-
with gr.Row():
|
123 |
-
gr.Examples(
|
124 |
-
fn=process,
|
125 |
-
examples=EXAMPLES,
|
126 |
-
inputs=[
|
127 |
-
checkpoint_dropdown_component,
|
128 |
-
task_dropdown_component,
|
129 |
-
image_input_component,
|
130 |
-
image_prompter_input_component
|
131 |
-
],
|
132 |
-
outputs=[
|
133 |
-
image_output_component,
|
134 |
-
text_output_component
|
135 |
-
],
|
136 |
-
run_on_click=True
|
137 |
-
)
|
138 |
-
|
139 |
-
def on_dropdown_change(text):
|
140 |
-
return [
|
141 |
-
gr.Image(visible=text in IMAGE_INPUT_TASK_NAMES),
|
142 |
-
ImagePrompter(visible=text in IMAGE_PROMPTER_INPUT_TASK_NAMES),
|
143 |
-
gr.Image(visible=text in IMAGE_OUTPUT_TASK_NAMES),
|
144 |
-
gr.Textbox(visible=text in TEXTBOX_OUTPUT_TASK_NAMES)
|
145 |
-
]
|
146 |
-
|
147 |
-
task_dropdown_component.change(
|
148 |
-
on_dropdown_change,
|
149 |
-
inputs=[task_dropdown_component],
|
150 |
-
outputs=[
|
151 |
-
image_input_component,
|
152 |
-
image_prompter_input_component,
|
153 |
-
image_output_component,
|
154 |
-
text_output_component
|
155 |
-
]
|
156 |
-
)
|
157 |
-
submit_button_component.click(
|
158 |
-
fn=process,
|
159 |
-
inputs=[
|
160 |
-
checkpoint_dropdown_component,
|
161 |
-
task_dropdown_component,
|
162 |
-
image_input_component,
|
163 |
-
image_prompter_input_component
|
164 |
-
],
|
165 |
-
outputs=[
|
166 |
-
image_output_component,
|
167 |
-
text_output_component
|
168 |
-
]
|
169 |
-
)
|
170 |
-
|
171 |
demo.launch(debug=False, show_error=True, max_threads=1)
|
|
|
1 |
+
from typing import Tuple, Optional
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
import supervision as sv
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
from gradio_image_prompter import ImagePrompter
|
9 |
+
|
10 |
+
from utils.annotate import annotate_with_boxes
|
11 |
+
from utils.models import load_models, run_inference, CHECKPOINTS, \
|
12 |
+
pre_process_region_task_input, post_process_region_output
|
13 |
+
from utils.tasks import TASK_NAMES, TASKS, OBJECT_DETECTION_TASK_NAME, \
|
14 |
+
CAPTION_TASK_NAME, DETAILED_CAPTION_TASK_NAME, \
|
15 |
+
MORE_DETAILED_CAPTION_TASK_NAME, OCR_WITH_REGION_TASK_NAME, OCR_TASK_NAME, \
|
16 |
+
IMAGE_INPUT_TASK_NAMES, IMAGE_PROMPTER_INPUT_TASK_NAMES, IMAGE_OUTPUT_TASK_NAMES, \
|
17 |
+
TEXTBOX_OUTPUT_TASK_NAMES, IMAGE_TO_IMAGE_TASK_NAMES, IMAGE_TO_TEXT_TASK_NAMES, \
|
18 |
+
IMAGE_PROMPT_TO_IMAGE_TASK_NAMES, REGION_PROPOSAL_TASK_NAME, \
|
19 |
+
DENSE_REGION_CAPTION_TASK_NAME
|
20 |
+
|
21 |
+
MARKDOWN = """
|
22 |
+
# Florence-2 🔥
|
23 |
+
|
24 |
+
Florence-2 is a lightweight vision-language model open-sourced by Microsoft under the
|
25 |
+
MIT license. The model demonstrates strong zero-shot and fine-tuning capabilities
|
26 |
+
across tasks such as captioning, object detection, grounding, and segmentation.
|
27 |
+
The model takes images and task prompts as input, generating the desired results in
|
28 |
+
text format. It uses a DaViT vision encoder to convert images into visual token
|
29 |
+
embeddings. These are then concatenated with BERT-generated text embeddings and
|
30 |
+
processed by a transformer-based multi-modal encoder-decoder to generate the response.
|
31 |
+
"""
|
32 |
+
EXAMPLES = [
|
33 |
+
["microsoft/Florence-2-large-ft", OBJECT_DETECTION_TASK_NAME, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
|
34 |
+
["microsoft/Florence-2-large-ft", REGION_PROPOSAL_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
35 |
+
["microsoft/Florence-2-large-ft", DENSE_REGION_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
36 |
+
["microsoft/Florence-2-large-ft", CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
37 |
+
["microsoft/Florence-2-large-ft", DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
38 |
+
["microsoft/Florence-2-large-ft", MORE_DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
39 |
+
["microsoft/Florence-2-large-ft", OCR_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
40 |
+
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
41 |
+
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
42 |
+
]
|
43 |
+
|
44 |
+
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
DEVICE = "cuda"
|
46 |
+
MODELS, PROCESSORS = load_models(DEVICE)
|
47 |
+
|
48 |
+
|
49 |
+
@spaces.GPU
|
50 |
+
def process(
|
51 |
+
checkpoint_dropdown,
|
52 |
+
task_dropdown,
|
53 |
+
image_input,
|
54 |
+
image_prompter_input
|
55 |
+
) -> Tuple[Optional[Image.Image], Optional[str]]:
|
56 |
+
model = MODELS[checkpoint_dropdown]
|
57 |
+
processor = PROCESSORS[checkpoint_dropdown]
|
58 |
+
task = TASKS[task_dropdown]
|
59 |
+
|
60 |
+
if task_dropdown in IMAGE_TO_IMAGE_TASK_NAMES:
|
61 |
+
_, response = run_inference(
|
62 |
+
model, processor, DEVICE, image_input, task)
|
63 |
+
detections = sv.Detections.from_lmm(
|
64 |
+
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
65 |
+
return annotate_with_boxes(image_input, detections), None
|
66 |
+
|
67 |
+
elif task_dropdown in IMAGE_TO_TEXT_TASK_NAMES:
|
68 |
+
_, response = run_inference(
|
69 |
+
model, processor, DEVICE, image_input, task)
|
70 |
+
return None, response[task]
|
71 |
+
|
72 |
+
elif task_dropdown in IMAGE_PROMPT_TO_IMAGE_TASK_NAMES:
|
73 |
+
detections_list = []
|
74 |
+
|
75 |
+
print(image_prompter_input)
|
76 |
+
|
77 |
+
image_input = image_prompter_input["image"]
|
78 |
+
for prompt in image_prompter_input["points"]:
|
79 |
+
text = pre_process_region_task_input(
|
80 |
+
prompt=prompt,
|
81 |
+
resolution_wh=image_input.size
|
82 |
+
)
|
83 |
+
_, response = run_inference(
|
84 |
+
model, processor, DEVICE, image_input, task, text)
|
85 |
+
detections = sv.Detections.from_lmm(
|
86 |
+
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
87 |
+
detections_list.append(detections)
|
88 |
+
detections = sv.Detections.merge(detections_list=detections_list)
|
89 |
+
detections = post_process_region_output(
|
90 |
+
detections=detections, resolution_wh=image_input.size)
|
91 |
+
|
92 |
+
return annotate_with_boxes(image_input, detections), None
|
93 |
+
|
94 |
+
|
95 |
+
with gr.Blocks() as demo:
|
96 |
+
gr.Markdown(MARKDOWN)
|
97 |
+
with gr.Row():
|
98 |
+
checkpoint_dropdown_component = gr.Dropdown(
|
99 |
+
choices=CHECKPOINTS,
|
100 |
+
value=CHECKPOINTS[0],
|
101 |
+
label="Model", info="Select a Florence 2 model to use.",
|
102 |
+
interactive=True
|
103 |
+
)
|
104 |
+
task_dropdown_component = gr.Dropdown(
|
105 |
+
choices=TASK_NAMES,
|
106 |
+
value=TASK_NAMES[0],
|
107 |
+
label="Task", info="Select a task to perform with the model.",
|
108 |
+
interactive=True
|
109 |
+
)
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
image_input_component = gr.Image(
|
114 |
+
type='pil', label='Upload image')
|
115 |
+
image_prompter_input_component = ImagePrompter(
|
116 |
+
type='pil', label='Image prompt', visible=False)
|
117 |
+
submit_button_component = gr.Button(value='Submit', variant='primary')
|
118 |
+
|
119 |
+
with gr.Column():
|
120 |
+
image_output_component = gr.Image(type='pil', label='Image Output')
|
121 |
+
text_output_component = gr.Textbox(label='Caption Output', visible=False)
|
122 |
+
with gr.Row():
|
123 |
+
gr.Examples(
|
124 |
+
fn=process,
|
125 |
+
examples=EXAMPLES,
|
126 |
+
inputs=[
|
127 |
+
checkpoint_dropdown_component,
|
128 |
+
task_dropdown_component,
|
129 |
+
image_input_component,
|
130 |
+
image_prompter_input_component
|
131 |
+
],
|
132 |
+
outputs=[
|
133 |
+
image_output_component,
|
134 |
+
text_output_component
|
135 |
+
],
|
136 |
+
run_on_click=True
|
137 |
+
)
|
138 |
+
|
139 |
+
def on_dropdown_change(text):
|
140 |
+
return [
|
141 |
+
gr.Image(visible=text in IMAGE_INPUT_TASK_NAMES),
|
142 |
+
ImagePrompter(visible=text in IMAGE_PROMPTER_INPUT_TASK_NAMES),
|
143 |
+
gr.Image(visible=text in IMAGE_OUTPUT_TASK_NAMES),
|
144 |
+
gr.Textbox(visible=text in TEXTBOX_OUTPUT_TASK_NAMES)
|
145 |
+
]
|
146 |
+
|
147 |
+
task_dropdown_component.change(
|
148 |
+
on_dropdown_change,
|
149 |
+
inputs=[task_dropdown_component],
|
150 |
+
outputs=[
|
151 |
+
image_input_component,
|
152 |
+
image_prompter_input_component,
|
153 |
+
image_output_component,
|
154 |
+
text_output_component
|
155 |
+
]
|
156 |
+
)
|
157 |
+
submit_button_component.click(
|
158 |
+
fn=process,
|
159 |
+
inputs=[
|
160 |
+
checkpoint_dropdown_component,
|
161 |
+
task_dropdown_component,
|
162 |
+
image_input_component,
|
163 |
+
image_prompter_input_component
|
164 |
+
],
|
165 |
+
outputs=[
|
166 |
+
image_output_component,
|
167 |
+
text_output_component
|
168 |
+
]
|
169 |
+
)
|
170 |
+
|
171 |
demo.launch(debug=False, show_error=True, max_threads=1)
|