Spaces:
Sleeping
Sleeping
File size: 21,941 Bytes
b312806 2c57374 453eb24 2c57374 453eb24 2c57374 5fb3911 061389d 453eb24 5fb3911 453eb24 061389d 453eb24 061389d 453eb24 061389d 453eb24 061389d 453eb24 2c57374 453eb24 061389d 453eb24 061389d 453eb24 061389d 453eb24 061389d 453eb24 061389d 453eb24 061389d 453eb24 061389d 453eb24 061389d 453eb24 f218c29 2c57374 f218c29 2c57374 453eb24 061389d 453eb24 061389d 453eb24 2c57374 453eb24 061389d 453eb24 061389d 453eb24 061389d 5fb3911 061389d 5fb3911 061389d 5fb3911 061389d 5fb3911 061389d 5fb3911 2c57374 061389d 5fb3911 061389d 5fb3911 061389d 2c57374 061389d 3d0b5bf 4bc22ca 3d0b5bf 061389d 5fb3911 061389d 5fb3911 453eb24 5fb3911 2c57374 5fb3911 2c57374 a9a2704 5fb3911 a9a2704 5fb3911 a9a2704 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
from scipy.signal import butter, filtfilt, find_peaks
from scipy.signal import savgol_filter, find_peaks
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import librosa
import pywt
# GENERAL HELPER FUNCTIONS
def denoise_audio(audiodata: np.ndarray, sr: int) -> tuple[np.ndarray, int]:
"""
Enhanced denoising of audio signals optimized for heart sounds.
Uses a combination of bandpass filtering, adaptive wavelet denoising,
and improved spectral subtraction.
Parameters:
-----------
audiodata : np.ndarray
Input audio signal (1D numpy array)
sr : int
Sampling rate in Hz
Returns:
--------
tuple[np.ndarray, int]
Tuple containing (denoised_signal, sampling_rate)
"""
# Input validation and conversion
if not isinstance(audiodata, np.ndarray) or audiodata.ndim != 1:
raise ValueError("audiodata must be a 1D numpy array")
if not isinstance(sr, int) or sr <= 0:
raise ValueError("sr must be a positive integer")
# Convert to float32 and normalize
audio = audiodata.astype(np.float32)
audio = audio / np.max(np.abs(audio))
# 1. Enhanced Bandpass Filter
# Optimize frequency range for heart sounds (20-200 Hz)
nyquist = sr / 2
low, high = 20 / nyquist, 200 / nyquist
order = 4 # Filter order
b, a = butter(order, [low, high], btype='band')
filtered = filtfilt(b, a, audio)
# 2. Adaptive Wavelet Denoising
def apply_wavelet_denoising(sig):
# Use sym4 wavelet (good for biomedical signals)
wavelet = 'sym4'
level = min(6, pywt.dwt_max_level(len(sig), pywt.Wavelet(wavelet).dec_len))
# Decompose signal
coeffs = pywt.wavedec(sig, wavelet, level=level)
# Adaptive thresholding based on level
for i in range(1, len(coeffs)):
# Calculate level-dependent threshold
sigma = np.median(np.abs(coeffs[i])) / 0.6745
threshold = sigma * np.sqrt(2 * np.log(len(coeffs[i])))
# Adjust threshold based on decomposition level
level_factor = 1 - (i / len(coeffs)) # Higher levels get lower thresholds
coeffs[i] = pywt.threshold(coeffs[i], threshold * level_factor, mode='soft')
return pywt.waverec(coeffs, wavelet)
# Apply wavelet denoising
denoised = apply_wavelet_denoising(filtered)
# Ensure consistent length
if len(denoised) != len(audio):
denoised = librosa.util.fix_length(denoised, size=len(audio))
# 3. Improved Spectral Subtraction
def spectral_subtract(sig):
# Parameters
frame_length = int(sr * 0.04) # 40ms frames
hop_length = frame_length // 2
# Compute STFT
D = librosa.stft(sig, n_fft=frame_length, hop_length=hop_length)
mag, phase = np.abs(D), np.angle(D)
# Estimate noise spectrum from low-energy frames
frame_energy = np.sum(mag**2, axis=0)
noise_threshold = np.percentile(frame_energy, 15)
noise_frames = mag[:, frame_energy < noise_threshold]
if noise_frames.size > 0:
noise_spectrum = np.median(noise_frames, axis=1)
# Oversubtraction factor (frequency-dependent)
freq_bins = np.fft.rfftfreq(frame_length, 1/sr)
alpha = 1.0 + 0.01 * (freq_bins / nyquist)
alpha = alpha[:len(noise_spectrum)].reshape(-1, 1)
# Spectral subtraction with flooring
mag_clean = np.maximum(mag - alpha * noise_spectrum.reshape(-1, 1), 0.01 * mag)
# Reconstruct signal
D_clean = mag_clean * np.exp(1j * phase)
return librosa.istft(D_clean, hop_length=hop_length)
return sig
# Apply spectral subtraction
final = spectral_subtract(denoised)
# Final normalization
final = final / np.max(np.abs(final))
return final, sr
def getaudiodata(filepath: str, target_sr: int = 16000) -> tuple[int, np.ndarray]:
"""
Load and process audio data with consistent output properties.
Parameters:
-----------
filepath : str
Path to the audio file
target_sr : int
Target sampling rate (default: 16000 Hz)
Returns:
--------
tuple[int, np.ndarray]
Sampling rate and processed audio data with consistent properties:
- dtype: float32
- shape: (N,) mono audio
- amplitude range: [-0.95, 0.95]
- no NaN or Inf values
- C-contiguous memory layout
"""
# Load audio with specified sampling rate
audiodata, sr = librosa.load(filepath, sr=target_sr)
# Ensure numpy array
audiodata = np.asarray(audiodata)
# Convert to mono if stereo
if len(audiodata.shape) > 1:
audiodata = np.mean(audiodata, axis=1)
# Handle any NaN or Inf values
audiodata = np.nan_to_num(audiodata, nan=0.0, posinf=0.0, neginf=0.0)
# Normalize to prevent clipping while maintaining relative amplitudes
max_abs = np.max(np.abs(audiodata))
if max_abs > 0: # Avoid division by zero
audiodata = audiodata * (0.95 / max_abs)
# Ensure float32 dtype and memory contiguous
audiodata = np.ascontiguousarray(audiodata, dtype=np.float32)
return sr, audiodata
def getBeats(audiodata: np.ndarray, sr: int, method='envelope') -> tuple[float, np.ndarray, np.ndarray]:
"""
Advanced heartbeat detection optimized for peak detection with improved sensitivity.
Parameters:
-----------
audiodata : np.ndarray
Audio time series
sr : int
Sampling rate
method : str
Detection method: 'onset', 'envelope', 'fusion' (default)
Returns:
--------
tempo : float
Estimated heart rate in BPM
peak_times : np.ndarray
Times of detected heartbeat peaks
cleaned_audio : np.ndarray
Cleaned audio signal
"""
# Denoise and normalize
audiodata, sr = denoise_audio(audiodata, sr)
# Normalize to prevent clipping while maintaining relative amplitudes
cleaned_audio = audiodata / np.max(np.abs(audiodata))
def get_envelope_peaks():
"""Detect peaks using enhanced envelope method with better sensitivity"""
# Calculate envelope using appropriate frame sizes
hop_length = int(sr * 0.01) # 10ms hop
frame_length = int(sr * 0.04) # 40ms window
# Calculate RMS energy
rms = librosa.feature.rms(
y=cleaned_audio,
frame_length=frame_length,
hop_length=hop_length
)[0]
# Smooth the envelope (less aggressive smoothing)
rms_smooth = savgol_filter(rms, 7, 3)
# Find peaks with more lenient thresholds
peaks, properties = find_peaks(
rms_smooth,
distance=int(0.2 * (sr / hop_length)), # Minimum 0.2s between peaks (300 BPM max)
height=np.mean(rms_smooth) + 0.1 * np.std(rms_smooth), # Lower height threshold
prominence=np.mean(rms_smooth) * 0.1, # Lower prominence threshold
width=(int(0.01 * (sr / hop_length)), int(0.2 * (sr / hop_length))) # 10-200ms width
)
# Refine peak locations using original signal
refined_peaks = []
window_size = int(0.05 * sr) # 50ms window for refinement
for peak in peaks:
# Convert envelope peak to sample domain
sample_idx = peak * hop_length
# Define window boundaries
start = max(0, sample_idx - window_size//2)
end = min(len(cleaned_audio), sample_idx + window_size//2)
# Find the maximum amplitude within the window
window = np.abs(cleaned_audio[int(start):int(end)])
max_idx = np.argmax(window)
refined_peaks.append(start + max_idx)
return np.array(refined_peaks), rms_smooth
def get_onset_peaks():
"""Enhanced onset detection with better sensitivity"""
# Multi-band onset detection with adjusted parameters
onset_env = librosa.onset.onset_strength(
y=cleaned_audio,
sr=sr,
hop_length=256, # Smaller hop length for better temporal resolution
aggregate=np.median,
n_mels=128
)
# More lenient thresholding
threshold = np.mean(onset_env) + 0.3 * np.std(onset_env)
# Get onset positions
onset_frames = librosa.onset.onset_detect(
onset_envelope=onset_env,
sr=sr,
hop_length=256,
backtrack=True,
threshold=threshold,
pre_max=20, # 20 frames before peak
post_max=20, # 20 frames after peak
pre_avg=25, # 25 frames before for mean
post_avg=25, # 25 frames after for mean
wait=10 # Wait 10 frames before detecting next onset
)
# Refine onset positions to peaks
refined_peaks = []
window_size = int(0.05 * sr) # 50ms window
for frame in onset_frames:
# Convert frame to sample index
sample_idx = frame * 256 # Using hop_length=256
# Define window boundaries
start = max(0, sample_idx - window_size//2)
end = min(len(cleaned_audio), sample_idx + window_size//2)
# Find the maximum amplitude within the window
window = np.abs(cleaned_audio[int(start):int(end)])
max_idx = np.argmax(window)
refined_peaks.append(start + max_idx)
return np.array(refined_peaks), onset_env
# Apply selected method
if method == 'envelope':
peaks, _ = get_envelope_peaks()
elif method == 'onset':
peaks, _ = get_onset_peaks()
else: # fusion method
# Get peaks from both methods
env_peaks, _ = get_envelope_peaks()
onset_peaks, _ = get_onset_peaks()
# Merge nearby peaks (within 50ms)
all_peaks = np.sort(np.concatenate([env_peaks, onset_peaks]))
merged_peaks = []
last_peak = -np.inf
for peak in all_peaks:
if (peak - last_peak) / sr > 0.05: # 50ms minimum separation
merged_peaks.append(peak)
last_peak = peak
peaks = np.array(merged_peaks)
# Convert peaks to times
peak_times = peaks / sr
# Calculate tempo using peak times
if len(peak_times) > 1:
# Use weighted average of intervals
intervals = np.diff(peak_times)
tempos = 60 / intervals # Convert intervals to BPM
# Remove physiologically impossible tempos
valid_tempos = tempos[(tempos >= 30) & (tempos <= 300)]
if len(valid_tempos) > 0:
tempo = np.median(valid_tempos) # Use median for robustness
else:
tempo = 0
else:
tempo = 0
return tempo, peak_times, cleaned_audio
def plotBeattimes(beattimes: np.ndarray,
audiodata: np.ndarray,
sr: int,
beattimes2: np.ndarray = None) -> go.Figure:
"""
Plot audio waveform with beat markers for one or two sets of beat times.
Parameters:
-----------
beattimes : np.ndarray
Primary array of beat times in seconds (S1 beats if beattimes2 is provided)
audiodata : np.ndarray
Audio time series data
sr : int
Sampling rate
beattimes2 : np.ndarray, optional
Secondary array of beat times in seconds (S2 beats)
Returns:
--------
go.Figure
Plotly figure with waveform and beat markers
"""
# Calculate time array for the full audio
time = np.arange(len(audiodata)) / sr
# Create the figure
fig = go.Figure()
# Add waveform
fig.add_trace(
go.Scatter(
x=time,
y=audiodata,
mode='lines',
name='Waveform',
line=dict(color='blue', width=1)
)
)
# Process and plot primary beat times
if isinstance(beattimes[0], str):
beat_indices = np.round(np.array([float(bt.replace(',', '.')) for bt in beattimes]) * sr).astype(int)
else:
beat_indices = np.round(beattimes * sr).astype(int)
beat_indices = beat_indices[beat_indices < len(audiodata)]
beat_amplitudes = audiodata[beat_indices]
# Define beat name based on whether secondary beats are provided
beat_name = "Beats S1" if beattimes2 is not None else "Beats"
# Add primary beat markers
fig.add_trace(
go.Scatter(
x=beattimes[beat_indices < len(audiodata)],
y=beat_amplitudes,
mode='markers',
name=beat_name,
marker=dict(
color='red',
size=8,
symbol='circle',
line=dict(color='darkred', width=1)
)
)
)
# Add primary beat vertical lines
for beat_time in beattimes[beat_indices < len(audiodata)]:
fig.add_vline(
x=beat_time,
line=dict(color="rgba(255, 0, 0, 0.2)", width=1),
layer="below"
)
# Process and plot secondary beat times if provided
if beattimes2 is not None:
if isinstance(beattimes2[0], str):
beat_indices2 = np.round(np.array([float(bt.replace(',', '.')) for bt in beattimes2]) * sr).astype(int)
else:
beat_indices2 = np.round(beattimes2 * sr).astype(int)
beat_indices2 = beat_indices2[beat_indices2 < len(audiodata)]
beat_amplitudes2 = audiodata[beat_indices2]
# Add secondary beat markers
fig.add_trace(
go.Scatter(
x=beattimes2[beat_indices2 < len(audiodata)],
y=beat_amplitudes2,
mode='markers',
name="Beats S2",
marker=dict(
color='green',
size=8,
symbol='circle',
line=dict(color='darkgreen', width=1)
)
)
)
# Add secondary beat vertical lines
for beat_time in beattimes2[beat_indices2 < len(audiodata)]:
fig.add_vline(
x=beat_time,
line=dict(color="rgba(0, 255, 0, 0.2)", width=1),
layer="below"
)
# Update layout
fig.update_layout(
title="Audio Waveform with Beat Detection",
xaxis_title="Time (seconds)",
yaxis_title="Amplitude",
showlegend=True, # Changed to True to show beat types
hovermode='closest',
plot_bgcolor='white',
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def iterate_beat_segments(beat_times, sr, audio):
"""
Iterate over audio segments between beats marked with label 1.
Parameters:
- beat_times: df of beattimes and labels as DataFrame
- sr: Sample rate of the audio
- audio: np.ndarray of audio data
Yields:
- List of segment metrics with associated beat information
"""
# Get indices where label is 1
label_ones = beat_times[beat_times['Label (S1=1/S2=0)'] == 1].index.tolist()
segment_metrics = []
# Iterate through pairs of label 1 indices
for i in range(len(label_ones) - 1):
start_idx = label_ones[i]
end_idx = label_ones[i + 1]
# Get all beats between two label 1 beats (inclusive)
segment_beats = beat_times.iloc[start_idx:end_idx + 1]
# Create list of tuples (label, beattime)
beat_info = list(zip(segment_beats['Label (S1=1/S2=0)'],
segment_beats['Beattimes']))
# Get start and end samples
start_sample = librosa.time_to_samples(segment_beats.iloc[0]['Beattimes'], sr=sr)
end_sample = librosa.time_to_samples(segment_beats.iloc[-1]['Beattimes'], sr=sr)
# Extract audio segment
segment = audio[start_sample:end_sample]
# Analyze segment with beat information if not empty
if len(segment) > 0:
segment_metrics.append(segment_analysis(segment, sr, beat_info))
return segment_metrics
def segment_analysis(segment, sr, s1s2:list):
"""
Analyze an audio segment and compute various metrics.
Parameters:
- segment: np.ndarray of audio segment data
- sr: Sample rate of the audio
Returns:
- List of computed metrics
"""
# Duration
duration = len(segment) / sr
# RMS Energy
rms_energy = np.sqrt(np.mean(segment**2))
# Calculate frequency spectrum and find dominant frequencies
fft = np.abs(np.fft.rfft(segment))
freqs = np.fft.rfftfreq(len(segment), d=1/sr)
# Focus on frequency range typical for heart sounds (20-200 Hz)
mask = (freqs >= 20) & (freqs <= 200)
dominant_freq_idx = np.argmax(fft[mask])
mean_frequency = freqs[mask][dominant_freq_idx]
s1_to_s2_duration = []
s2_to_s1_duration = []
prev = s1s2[0]
for i in range(1, len(s1s2)):
if prev[0] == 0 and s1s2[i][0] == 1:
s2_to_s1_duration.append(s1s2[i][1] - prev[1])
elif prev[0] == 1 and s1s2[i][0] == 0:
s1_to_s2_duration.append(s1s2[i][1] - prev[1])
prev = s1s2[i]
return {
"rms_energy": rms_energy,
"mean_frequency": mean_frequency,
"duration": duration,
"s1_to_s2_duration": s1_to_s2_duration,
"s2_to_s1_duration": s2_to_s1_duration,
"segment": segment
}
def find_s1s2(df:pd.DataFrame):
times = df['Beattimes'].to_numpy()
n_peaks = len(times)
# Initialize the feature array
feature_array = np.zeros((n_peaks, 4))
# Fill in the peak times (first column)
feature_array[:, 0] = times
# Calculate and fill distances to previous peaks (second column)
feature_array[1:, 1] = np.diff(times) # For all except first peak
feature_array[0, 1] = feature_array[1, 1] # First peak uses same as second
# Calculate and fill distances to next peaks (third column)
feature_array[:-1, 2] = np.diff(times) # For all except last peak
feature_array[-1, 2] = feature_array[-2, 2] # Last peak uses same as second-to-last
# Extract features (distances to prev and next peaks)
X = feature_array[:, 1:3]
# Scale features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Apply K-means clustering
kmeans = KMeans(n_clusters=2, random_state=42)
labels = kmeans.fit_predict(X_scaled)
# Update the labels in the feature array
feature_array[:, 3] = labels
return feature_array
# ANALYZE
def compute_segment_metrics(beattimes: pd.DataFrame, sr: int, audio: np.ndarray):
beattimes[beattimes['Label (S1=1/S2=0)'] == 1]
segment_metrics = iterate_beat_segments(beattimes, sr, audio)
print("segment_metrics", segment_metrics)
return segment_metrics
def compute_hrv(s1_to_s2, s2_to_s1, sampling_rate):
"""
Compute Heart Rate Variability with debug statements
"""
# Convert to numpy arrays if not already
s1_to_s2 = np.array(s1_to_s2)
s2_to_s1 = np.array(s2_to_s1)
# Debug: Print input values
print("First few s1_to_s2 values:", s1_to_s2[:5])
print("First few s2_to_s1 values:", s2_to_s1[:5])
# Calculate RR intervals (full cardiac cycle)
rr_intervals = s1_to_s2 + s2_to_s1
# Debug: Print RR intervals
print("First few RR intervals (samples):", rr_intervals[:5])
# Convert to seconds
rr_intervals = rr_intervals / sampling_rate
print("First few RR intervals (seconds):", rr_intervals[:5])
# Calculate cumulative time for each heartbeat
time = np.cumsum(rr_intervals)
# Calculate instantaneous heart rate
heart_rate = 60 / rr_intervals # beats per minute
print("First few heart rate values:", heart_rate[:5])
# Compute RMSSD using a rolling window
window_size = int(30 / np.mean(rr_intervals)) # Approximate 30-second window
print("Window size:", window_size)
hrv_values = []
for i in range(len(rr_intervals)):
window_start = max(0, i - window_size)
window_data = rr_intervals[window_start:i+1]
if len(window_data) > 1:
# Debug: Print window data occasionally
if i % 100 == 0:
print(f"\nWindow {i}:")
print("Window data:", window_data)
print("Successive differences:", np.diff(window_data))
successive_diffs = np.diff(window_data)
rmssd = np.sqrt(np.mean(successive_diffs ** 2)) * 1000 # Convert to ms
hrv_values.append(rmssd)
else:
hrv_values.append(np.nan)
hrv_values = np.array(hrv_values)
# Debug: Print HRV statistics
print("\nHRV Statistics:")
print("Min HRV:", np.nanmin(hrv_values))
print("Max HRV:", np.nanmax(hrv_values))
print("Mean HRV:", np.nanmean(hrv_values))
print("Number of valid HRV values:", np.sum(~np.isnan(hrv_values)))
# Remove potential NaN values at the start
valid_idx = ~np.isnan(hrv_values)
time = time[valid_idx]
hrv_values = hrv_values[valid_idx]
heart_rate = heart_rate[valid_idx]
return time, hrv_values, heart_rate |