Spaces:
Sleeping
Sleeping
j-tobias
commited on
Commit
·
81de4d2
1
Parent(s):
ee7c3ab
added comparison
Browse files
app.py
CHANGED
@@ -2,11 +2,32 @@ from plotly.subplots import make_subplots
|
|
2 |
import plotly.graph_objects as go
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
|
|
5 |
import librosa
|
6 |
import os
|
7 |
|
8 |
example_dir = "Examples"
|
9 |
example_files = [os.path.join(example_dir, f) for f in os.listdir(example_dir) if f.endswith(('.wav', '.mp3', '.ogg'))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS
|
12 |
def getBeats(audiodata:np.ndarray, sr:int):
|
@@ -45,31 +66,51 @@ def plotCombined(audiodata, sr):
|
|
45 |
row=2, col=1
|
46 |
)
|
47 |
|
|
|
48 |
# Update layout
|
49 |
fig.update_layout(
|
50 |
height=800, width=900,
|
51 |
title_text="Audio Analysis",
|
52 |
)
|
|
|
53 |
fig.update_xaxes(title_text="Time (s)", row=2, col=1)
|
54 |
fig.update_yaxes(title_text="Amplitude", row=1, col=1)
|
55 |
fig.update_yaxes(title_text="Frequency (Hz)", type="log", row=2, col=1)
|
56 |
|
57 |
return fig
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def analyze_single(audio:gr.Audio):
|
60 |
# Extract audio data and sample rate
|
61 |
-
sr, audiodata = audio
|
62 |
-
|
63 |
-
# Ensure audiodata is a numpy array
|
64 |
-
if not isinstance(audiodata, np.ndarray):
|
65 |
-
audiodata = np.array(audiodata)
|
66 |
|
67 |
-
# Check if audio is mono or stereo
|
68 |
-
if len(audiodata.shape) > 1:
|
69 |
-
# If stereo, convert to mono by averaging channels
|
70 |
-
audiodata = np.mean(audiodata, axis=1)
|
71 |
-
|
72 |
-
audiodata = np.astype(audiodata, np.float16)
|
73 |
|
74 |
# Now you have:
|
75 |
# - audiodata: a 1D numpy array containing the audio samples
|
@@ -89,6 +130,7 @@ def analyze_single(audio:gr.Audio):
|
|
89 |
|
90 |
tempo, beattimes = getBeats(audiodata, sr)
|
91 |
spectogram_wave = plotCombined(audiodata, sr)
|
|
|
92 |
|
93 |
# Return your analysis results
|
94 |
results = f"""
|
@@ -96,14 +138,88 @@ def analyze_single(audio:gr.Audio):
|
|
96 |
- Sample rate: {sr} Hz
|
97 |
- Mean Zero Crossing Rate: {np.mean(zcr):.4f}
|
98 |
- Mean RMS Energy: {np.mean(rms):.4f}
|
99 |
-
- Tempo: {tempo}
|
100 |
- Beats: {beattimes}
|
|
|
|
|
101 |
"""
|
102 |
-
return results, spectogram_wave
|
103 |
#-----------------------------------------------
|
104 |
#-----------------------------------------------
|
105 |
|
106 |
# HELPER FUNCTIONS FOR DUAL AUDIO ANALYSIS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
|
@@ -129,8 +245,9 @@ with gr.Blocks() as app:
|
|
129 |
|
130 |
results = gr.Markdown()
|
131 |
spectogram_wave = gr.Plot()
|
|
|
132 |
|
133 |
-
analyzebtn.click(analyze_single, audiofile, [results, spectogram_wave])
|
134 |
|
135 |
gr.Examples(
|
136 |
examples=example_files,
|
@@ -140,6 +257,11 @@ with gr.Blocks() as app:
|
|
140 |
cache_examples=False
|
141 |
)
|
142 |
|
|
|
|
|
|
|
|
|
|
|
143 |
with gr.Tab("Two Audios"):
|
144 |
|
145 |
with gr.Row():
|
@@ -157,6 +279,16 @@ with gr.Blocks() as app:
|
|
157 |
results2 = gr.Markdown()
|
158 |
spectogram_wave2 = gr.Plot()
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
if __name__ == "__main__":
|
162 |
app.launch()
|
|
|
2 |
import plotly.graph_objects as go
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
import itertools
|
6 |
import librosa
|
7 |
import os
|
8 |
|
9 |
example_dir = "Examples"
|
10 |
example_files = [os.path.join(example_dir, f) for f in os.listdir(example_dir) if f.endswith(('.wav', '.mp3', '.ogg'))]
|
11 |
+
example_pairs = [list(pair) for pair in itertools.combinations(example_files, 2)][:25] # Limit to 5 pairs
|
12 |
+
print("Example Pairs: ", example_pairs)
|
13 |
+
# GENERAL HELPER FUNCTIONS
|
14 |
+
def getaudiodata(audio:gr.Audio)->tuple[int,np.ndarray]:
|
15 |
+
# Extract audio data and sample rate
|
16 |
+
sr, audiodata = audio
|
17 |
+
|
18 |
+
# Ensure audiodata is a numpy array
|
19 |
+
if not isinstance(audiodata, np.ndarray):
|
20 |
+
audiodata = np.array(audiodata)
|
21 |
+
|
22 |
+
# Check if audio is mono or stereo
|
23 |
+
if len(audiodata.shape) > 1:
|
24 |
+
# If stereo, convert to mono by averaging channels
|
25 |
+
audiodata = np.mean(audiodata, axis=1)
|
26 |
+
|
27 |
+
audiodata = np.astype(audiodata, np.float16)
|
28 |
+
|
29 |
+
return sr, audiodata
|
30 |
+
|
31 |
|
32 |
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS
|
33 |
def getBeats(audiodata:np.ndarray, sr:int):
|
|
|
66 |
row=2, col=1
|
67 |
)
|
68 |
|
69 |
+
|
70 |
# Update layout
|
71 |
fig.update_layout(
|
72 |
height=800, width=900,
|
73 |
title_text="Audio Analysis",
|
74 |
)
|
75 |
+
|
76 |
fig.update_xaxes(title_text="Time (s)", row=2, col=1)
|
77 |
fig.update_yaxes(title_text="Amplitude", row=1, col=1)
|
78 |
fig.update_yaxes(title_text="Frequency (Hz)", type="log", row=2, col=1)
|
79 |
|
80 |
return fig
|
81 |
|
82 |
+
def plotbeatshist(tempo, beattimes):
|
83 |
+
# Calculate beat durations
|
84 |
+
beat_durations = np.diff(beattimes)
|
85 |
+
|
86 |
+
# Create histogram
|
87 |
+
fig = go.Figure()
|
88 |
+
fig.add_trace(go.Histogram(
|
89 |
+
x=beat_durations,
|
90 |
+
nbinsx=60, # You can adjust the number of bins as needed
|
91 |
+
name='Beat Durations'
|
92 |
+
))
|
93 |
+
|
94 |
+
# Add vertical line for average beat duration
|
95 |
+
avg_duration = 60 / tempo # Convert tempo (BPM) to seconds
|
96 |
+
fig.add_vline(x=avg_duration, line_dash="dash", line_color="red",
|
97 |
+
annotation_text=f"Average: {avg_duration:.2f}s",
|
98 |
+
annotation_position="top right")
|
99 |
+
|
100 |
+
# Update layout
|
101 |
+
fig.update_layout(
|
102 |
+
title_text='Histogram of Beat Durations',
|
103 |
+
xaxis_title_text='Beat Duration (seconds)',
|
104 |
+
yaxis_title_text='Count',
|
105 |
+
bargap=0.05, # gap between bars
|
106 |
+
)
|
107 |
+
|
108 |
+
return fig
|
109 |
+
|
110 |
def analyze_single(audio:gr.Audio):
|
111 |
# Extract audio data and sample rate
|
112 |
+
sr, audiodata = getaudiodata(audio)
|
|
|
|
|
|
|
|
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# Now you have:
|
116 |
# - audiodata: a 1D numpy array containing the audio samples
|
|
|
130 |
|
131 |
tempo, beattimes = getBeats(audiodata, sr)
|
132 |
spectogram_wave = plotCombined(audiodata, sr)
|
133 |
+
beats_histogram = plotbeatshist(tempo, beattimes)
|
134 |
|
135 |
# Return your analysis results
|
136 |
results = f"""
|
|
|
138 |
- Sample rate: {sr} Hz
|
139 |
- Mean Zero Crossing Rate: {np.mean(zcr):.4f}
|
140 |
- Mean RMS Energy: {np.mean(rms):.4f}
|
141 |
+
- Tempo: {tempo:.4f}
|
142 |
- Beats: {beattimes}
|
143 |
+
- Beat durations: {np.diff(beattimes)}
|
144 |
+
- Mean Beat Duration: {np.mean(np.diff(beattimes)):.4f}
|
145 |
"""
|
146 |
+
return results, spectogram_wave, beats_histogram
|
147 |
#-----------------------------------------------
|
148 |
#-----------------------------------------------
|
149 |
|
150 |
# HELPER FUNCTIONS FOR DUAL AUDIO ANALYSIS
|
151 |
+
def analyze_double(audio1:gr.Audio, audio2:gr.Audio):
|
152 |
+
|
153 |
+
sr1, audiodata1 = getaudiodata(audio1)
|
154 |
+
sr2, audiodata2 = getaudiodata(audio2)
|
155 |
+
|
156 |
+
|
157 |
+
combinedfig = plotCombineddouble(audiodata1, sr1, audiodata2, sr2)
|
158 |
+
return combinedfig
|
159 |
+
|
160 |
+
def plotCombineddouble(audiodata1, sr1, audiodata2, sr2):
|
161 |
+
# Create subplots
|
162 |
+
fig = make_subplots(rows=2, cols=2, shared_xaxes=True, vertical_spacing=0.1,
|
163 |
+
subplot_titles=('Audio Waveform', 'Spectrogram'))
|
164 |
+
|
165 |
+
# Waveform plot
|
166 |
+
time = (np.arange(0, len(audiodata1)) / sr1)*2
|
167 |
+
fig.add_trace(
|
168 |
+
go.Scatter(x=time, y=audiodata1, mode='lines', name='Waveform', line=dict(color='blue', width=1)),
|
169 |
+
row=1, col=1
|
170 |
+
)
|
171 |
+
|
172 |
+
# Spectrogram plot
|
173 |
+
D = librosa.stft(audiodata1)
|
174 |
+
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
175 |
+
times = librosa.times_like(S_db)
|
176 |
+
freqs = librosa.fft_frequencies(sr=sr1)
|
177 |
+
|
178 |
+
fig.add_trace(
|
179 |
+
go.Heatmap(z=S_db, x=times, y=freqs, colorscale='Viridis',
|
180 |
+
zmin=S_db.min(), zmax=S_db.max(), colorbar=dict(title='Magnitude (dB)')),
|
181 |
+
row=2, col=1
|
182 |
+
)
|
183 |
+
|
184 |
+
# Waveform plot
|
185 |
+
time = (np.arange(0, len(audiodata2)) / sr2)*2
|
186 |
+
fig.add_trace(
|
187 |
+
go.Scatter(x=time, y=audiodata2, mode='lines', name='Waveform', line=dict(color='blue', width=1)),
|
188 |
+
row=1, col=2
|
189 |
+
)
|
190 |
+
|
191 |
+
# Spectrogram plot
|
192 |
+
D = librosa.stft(audiodata2)
|
193 |
+
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
194 |
+
times = librosa.times_like(S_db)
|
195 |
+
freqs = librosa.fft_frequencies(sr=sr2)
|
196 |
+
|
197 |
+
fig.add_trace(
|
198 |
+
go.Heatmap(z=S_db, x=times, y=freqs, colorscale='Viridis',
|
199 |
+
zmin=S_db.min(), zmax=S_db.max(), colorbar=dict(title='Magnitude (dB)')),
|
200 |
+
row=2, col=2
|
201 |
+
)
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
# Update layout
|
208 |
+
fig.update_layout(
|
209 |
+
height=800, width=1200,
|
210 |
+
title_text="Audio Analysis",
|
211 |
+
)
|
212 |
+
|
213 |
+
fig.update_xaxes(title_text="Time (s)", row=2, col=1)
|
214 |
+
fig.update_yaxes(title_text="Amplitude", row=1, col=1)
|
215 |
+
fig.update_yaxes(title_text="Frequency (Hz)", type="log", row=2, col=1)
|
216 |
+
|
217 |
+
fig.update_xaxes(title_text="Time (s)", row=2, col=2)
|
218 |
+
fig.update_yaxes(title_text="Amplitude", row=1, col=2)
|
219 |
+
fig.update_yaxes(title_text="Frequency (Hz)", type="log", row=2, col=2)
|
220 |
+
|
221 |
+
return fig
|
222 |
+
|
223 |
|
224 |
|
225 |
|
|
|
245 |
|
246 |
results = gr.Markdown()
|
247 |
spectogram_wave = gr.Plot()
|
248 |
+
beats_histogram = gr.Plot()
|
249 |
|
250 |
+
analyzebtn.click(analyze_single, audiofile, [results, spectogram_wave, beats_histogram])
|
251 |
|
252 |
gr.Examples(
|
253 |
examples=example_files,
|
|
|
257 |
cache_examples=False
|
258 |
)
|
259 |
|
260 |
+
gr.Markdown("""### Open TODO's
|
261 |
+
- Create Histogram for Beat durations
|
262 |
+
- classify Beat's into S1 and S2
|
263 |
+
- synthesise the mean Beat S1 & S2""")
|
264 |
+
|
265 |
with gr.Tab("Two Audios"):
|
266 |
|
267 |
with gr.Row():
|
|
|
279 |
results2 = gr.Markdown()
|
280 |
spectogram_wave2 = gr.Plot()
|
281 |
|
282 |
+
analyzebtn2.click(analyze_double, inputs=[audioone,audiotwo], outputs=spectogram_wave2)
|
283 |
+
|
284 |
+
# Add gr.Examples for the Two Audios tab
|
285 |
+
gr.Examples(
|
286 |
+
examples=example_pairs, # Create pairs of the same file for demonstration
|
287 |
+
inputs=[audioone, audiotwo],
|
288 |
+
outputs=spectogram_wave2,
|
289 |
+
fn=analyze_double,
|
290 |
+
cache_examples=False
|
291 |
+
)
|
292 |
|
293 |
if __name__ == "__main__":
|
294 |
app.launch()
|