Spaces:
Runtime error
Runtime error
jvcanavarro
commited on
Commit
·
8b843d9
1
Parent(s):
31916e9
Add app v0.1
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
import time
|
5 |
+
import pandas as pd
|
6 |
+
from datetime import datetime
|
7 |
+
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
|
8 |
+
|
9 |
+
DESCRIPTION = "Store a record of previous calls in order to verify if the client already called or not. Pretrained on `https://huggingface.co/datasets/superb` using [S3PRL recipe](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/voxceleb1)."
|
10 |
+
|
11 |
+
# COLUMNS = ["call_id", "date", "client_id", "duration", "new"]
|
12 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-sid")
|
13 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-sid")
|
14 |
+
|
15 |
+
def file_to_array(path):
|
16 |
+
speech, _ = librosa.load(path, sr=16000, mono=True)
|
17 |
+
duration = librosa.get_duration(y=speech)
|
18 |
+
return speech, duration
|
19 |
+
|
20 |
+
|
21 |
+
def handler(audio_path):
|
22 |
+
calls = pd.read_csv("call_records.csv")
|
23 |
+
speech, duration = file_to_array(audio_path)
|
24 |
+
|
25 |
+
# compute attention masks and normalize the waveform if needed
|
26 |
+
inputs = feature_extractor(speech, sampling_rate=16000, padding=True, return_tensors="pt")
|
27 |
+
|
28 |
+
logits = model(**inputs).logits
|
29 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
30 |
+
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
|
31 |
+
|
32 |
+
client_id = labels[0]
|
33 |
+
call_id = str(int(time.time()))
|
34 |
+
|
35 |
+
date = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
|
36 |
+
|
37 |
+
n_of_calls = len(calls.loc[calls.client_id == client_id])
|
38 |
+
new = n_of_calls == 0
|
39 |
+
|
40 |
+
# add new call record
|
41 |
+
record = [call_id, date, client_id, duration, new]
|
42 |
+
calls.loc[len(calls)] = record
|
43 |
+
|
44 |
+
calls.to_csv("call_records.csv", index=False)
|
45 |
+
|
46 |
+
if new:
|
47 |
+
return f"New client call: Client ID {client_id}"
|
48 |
+
|
49 |
+
return f"Client {client_id} calling again: {n_of_calls} previous calls"
|
50 |
+
|
51 |
+
|
52 |
+
first = gr.Interface(
|
53 |
+
fn=handler,
|
54 |
+
inputs=gr.Audio(label="Speech Audio", type="filepath"),
|
55 |
+
|
56 |
+
outputs=gr.Text(label="Output", value="..."),
|
57 |
+
description=DESCRIPTION
|
58 |
+
|
59 |
+
)
|
60 |
+
|
61 |
+
second = gr.Interface(
|
62 |
+
fn=handler,
|
63 |
+
inputs=gr.Audio(label="Microphone Input", source="microphone", type="filepath"),
|
64 |
+
outputs=gr.Text(label="Output", value="..."),
|
65 |
+
description=DESCRIPTION
|
66 |
+
)
|
67 |
+
|
68 |
+
app = gr.TabbedInterface(
|
69 |
+
[first, second],
|
70 |
+
title="Speaker Call Verification 🎤",
|
71 |
+
tab_names=["Audio Upload", "Microphone"],
|
72 |
+
)
|
73 |
+
app.launch()
|