Spaces:
Runtime error
Runtime error
File size: 14,197 Bytes
4973571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import matplotlib.pyplot as plt
import IPython.display as ipd
import os
import json
import math
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from scipy.io.wavfile import write
import gradio as gr
import numpy as np
from PIL import Image
import numpy as np
import os
from pathlib import Path
LANGUAGES = ['EN','CN','JP']
SPEAKER_ID = 0
COVER = "models/Yuuka/cover.png"
speaker_choice = "Yuuka"
MODEL_ZH_NAME = "早濑优香"
EXAMPLE_TEXT = "先生。今日も全力であなたをアシストしますね。"
#USER_INPUT_TEXT = ""
CONFIG_PATH = "configs/config2.json"
MODEL_PATH = "models/parappa/path.pth"
hps = utils.get_hparams_from_file(CONFIG_PATH)
net_g = SynthesizerTrn(
len(hps.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
model = net_g.eval()
model = utils.load_checkpoint(MODEL_PATH, net_g, None)
def load_model():
global hps,net_g,model
hps = utils.get_hparams_from_file(CONFIG_PATH)
net_g = SynthesizerTrn(
len(hps.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
model = net_g.eval()
model = utils.load_checkpoint(MODEL_PATH, net_g, None)
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def tts_fn(text, noise_scale, noise_scale_w, length_scale):
stn_tst = get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
sid = torch.LongTensor([SPEAKER_ID])
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
return (22050, audio)
def add_model_fn(example_text, cover, speakerID, name_en, name_cn, language):
# 检查必填字段是否为空
if not speakerID or not name_en or not language:
raise gr.Error("Please fill in all required fields!")
return "Failed to add model"
### 保存上传的文件
# 生成文件路径
model_save_dir = Path("models")
model_save_dir = model_save_dir / name_en
img_save_dir = model_save_dir
model_save_dir.mkdir(parents=True, exist_ok=True)
Model_name = name_en + ".pth"
model_save_dir = model_save_dir / Model_name
# 保存上传的图片
if cover is not None:
img = np.array(cover)
img = Image.fromarray(img)
img.save(os.path.join(img_save_dir, 'cover.png'))
#获取用户输入
new_model = {
"name_en": name_en,
"name_zh": name_cn,
"cover": img_save_dir / "cover.png",
"sid": speakerID,
"example": example_text,
"language": language,
"type": "single",
"model_path": model_save_dir
}
#写入json
with open("models/model_info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
models_info[name_en] = new_model
with open("models/model_info.json", "w") as f:
json.dump(models_info, f, cls=CustomEncoder)
return "Success"
def clear_input_text():
return ""
def clear_add_model_info():
return "",None,"","","",""
def get_options():
with open("models/model_info.json", "r", encoding="utf-8") as f:
global models_info
models_info = json.load(f)
for i,model_info in models_info.items():
global name_en
name_en = model_info['name_en']
def reset_options():
value_model_choice = models_info['Yuuka']['name_en']
value_speaker_id = models_info['Yuuka']['sid']
return value_model_choice,value_speaker_id
def refresh_options():
get_options()
value_model_choice = models_info[speaker_choice]['name_en']
value_speaker_id = models_info[speaker_choice]['sid']
return value_model_choice,value_speaker_id
def change_dropdown(choice):
global speaker_choice
speaker_choice = choice
global COVER
COVER = str(models_info[speaker_choice]['cover'])
global MODEL_PATH
MODEL_PATH = str(models_info[speaker_choice]['model_path'])
global MODEL_ZH_NAME
MODEL_ZH_NAME = str(models_info[speaker_choice]['name_zh'])
global EXAMPLE_TEXT
EXAMPLE_TEXT = str(models_info[speaker_choice]['example'])
speaker_id_change = gr.update(value=str(models_info[speaker_choice]['sid']))
cover_change = gr.update(value='<div align="center">'
f'<img style="width:auto;height:512px;" src="file/{COVER}">' if COVER else ""
f'<a><strong>{speaker_choice}</strong></a>'
'</div>')
title_change = gr.update(value=
'<div align="center">'
f'<h3><a><strong>{"语音名称: "}{MODEL_ZH_NAME}</strong></a>'
f'<h3><strong>{"checkpoint: "}{speaker_choice}</strong>'
'</div>')
lan_change = gr.update(value=str(models_info[speaker_choice]['language']))
example_change = gr.update(value=EXAMPLE_TEXT)
load_model()
return [speaker_id_change,cover_change,title_change,lan_change,example_change]
class CustomEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, Path):
return str(obj)
return super().default(obj)
download_audio_js = """
() =>{{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let audio = root.querySelector("#tts-audio-{audio_id}").querySelector("audio");
let text = root.querySelector("#input-text-{audio_id}").querySelector("textarea");
if (audio == undefined)
return;
text = text.value;
if (text == undefined)
text = Math.floor(Math.random()*100000000);
audio = audio.src;
let oA = document.createElement("a");
oA.download = text.substr(0, 20)+'.wav';
oA.href = audio;
document.body.appendChild(oA);
oA.click();
oA.remove();
}}
"""
if __name__ == '__main__':
with open("models/model_info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
for i, model_info in models_info.items():
name_en = model_info['name_en']
theme = gr.themes.Base()
with gr.Blocks(theme=theme) as interface:
with gr.Tab("Text to Speech"):
with gr.Column():
cover_markdown = gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:512px;" src="file/{COVER}">' if COVER else ""
'</div>')
title_markdown = gr.Markdown(
'<div align="center">'
f'<h3><a><strong>{"语音名称: "}{MODEL_ZH_NAME}</strong></a>'
f'<h3><strong>{"checkpoint: "}{speaker_choice}</strong>'
'</div>')
with gr.Row():
with gr.Column(scale=4):
input_text = gr.Textbox(
label="Input",
lines=2,
placeholder="Enter the text you want to process here",
elem_id=f"input-text-en-{name_en.replace(' ', '')}",
scale=2
)
with gr.Column(scale=1):
gen_button = gr.Button("Generate", variant="primary")
clear_input_button = gr.Button("Clear")
with gr.Row():
with gr.Column(scale=2):
lan = gr.Radio(label="Language", choices=LANGUAGES, value="JP")
noise_scale = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="Noise Scale (情感变化程度)",
value=0.6)
noise_scale_w = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="Noise Scale w (发音长度)",
value=0.668)
length_scale = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, label="Length Scale (语速)",
value=1.0)
with gr.Column(scale=1):
example_text_box = gr.Textbox(label="Example:",
value=EXAMPLE_TEXT)
output_audio = gr.Audio(label="Output", elem_id=f"tts-audio-en-{name_en.replace(' ', '')}")
download_button = gr.Button("Download")
# example = gr.Examples(
# examples = [EXAMPLE_TEXT],
# inputs=input_text,
# outputs = output_audio,
# fn=example_tts_fn,
# cache_examples=True
# )
gen_button.click(
tts_fn,
inputs=[input_text, noise_scale, noise_scale_w, length_scale],
outputs=output_audio)
clear_input_button.click(
clear_input_text,
outputs=input_text
)
download_button.click(None, [], [], _js=download_audio_js.format(audio_id=f"en-{name_en.replace(' ', '')}"))
# ------------------------------------------------------------------------------------------------------------------------
with gr.Tab("AI Singer"):
input_text_singer = gr.Textbox()
# ------------------------------------------------------------------------------------------------------------------------
with gr.Tab("TTS with ChatGPT"):
input_text_gpt = gr.Textbox()
# ------------------------------------------------------------------------------------------------------------------------
with gr.Tab("Settings"):
with gr.Box():
gr.Markdown("""# Select Model""")
with gr.Row():
with gr.Column(scale=5):
model_choice = gr.Dropdown(label="Model",
choices=[(model["name_en"]) for name, model in models_info.items()],
interactive=True,
value=models_info['Yuuka']['name_en']
)
with gr.Column(scale=5):
speaker_id_choice = gr.Dropdown(label="Speaker ID",
choices=[(str(model["sid"])) for name, model in
models_info.items()],
interactive=True,
value=str(models_info['Yuuka']['sid'])
)
with gr.Column(scale=1):
refresh_button = gr.Button("Refresh", variant="primary")
reset_button = gr.Button("Reset")
model_choice.change(fn=change_dropdown, inputs=model_choice,
outputs=[speaker_id_choice, cover_markdown, title_markdown, lan, example_text_box])
refresh_button.click(fn=refresh_options, outputs=[model_choice, speaker_id_choice])
reset_button.click(reset_options, outputs=[model_choice, speaker_id_choice])
with gr.Box():
gr.Markdown("# Add Model\n"
"> *为必填选项\n"
"> 添加完成后将**checkpoints**文件放到对应生成的文件夹中"
)
with gr.Row():
# file = gr.Files(label = "VITS Model*", file_types=[".pth"])
example_text = gr.Textbox(label="Example Text",
lines=16,
placeholder="Enter the example text here", )
model_cover = gr.Image(label="Cover")
with gr.Column():
model_speaker_id = gr.Textbox(label="Speaker List*",
placeholder="Single speaker model default=0")
model_name_en = gr.Textbox(label="name_en*")
model_name_cn = gr.Textbox(label="name_cn")
model_language = gr.Dropdown(label="Language*",
choices=LANGUAGES,
interactive=True)
with gr.Row():
add_model_button = gr.Button("Add Model", variant="primary")
clear_add_model_button = gr.Button("Clear")
with gr.Box():
with gr.Row():
message_box = gr.Textbox(label="Message")
add_model_button.click(add_model_fn,
inputs=[example_text, model_cover, model_speaker_id, model_name_en, model_name_cn,
model_language],
outputs=message_box
)
clear_add_model_button.click(clear_add_model_info,
outputs=[example_text, model_cover, model_speaker_id, model_name_en,
model_name_cn, model_language]
)
interface.queue(concurrency_count=1).launch(debug=True)
|