jvde commited on
Commit
f73a66e
1 Parent(s): 4973571
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +16 -0
  2. File_System.ipynb +487 -0
  3. GUI_Usage.ipynb +1138 -0
  4. LICENSE +21 -0
  5. SoftVC.ipynb +345 -0
  6. __pycache__/attentions.cpython-310.pyc +0 -0
  7. __pycache__/commons.cpython-310.pyc +0 -0
  8. __pycache__/models.cpython-310.pyc +0 -0
  9. __pycache__/modules.cpython-310.pyc +0 -0
  10. __pycache__/transforms.cpython-310.pyc +0 -0
  11. __pycache__/utils.cpython-310.pyc +0 -0
  12. attentions.py +303 -0
  13. commons.py +161 -0
  14. configs/config-single-speaker.json +54 -0
  15. configs/config.json +948 -0
  16. configs/config2.json +94 -0
  17. data_utils.py +392 -0
  18. filelists/yuuka_train.txt +108 -0
  19. filelists/yuuka_train.txt.cleaned +108 -0
  20. filelists/yuuka_val.txt +15 -0
  21. filelists/yuuka_val.txt.cleaned +15 -0
  22. inference.ipynb +253 -0
  23. losses.py +61 -0
  24. mel_processing.py +112 -0
  25. models.py +534 -0
  26. models/Mika/cover.png +0 -0
  27. models/Yuuka/cover.png +0 -0
  28. models/model_info.json +1 -0
  29. models/parappa/config.json +94 -0
  30. models/parappa/path.pth +3 -0
  31. modules.py +390 -0
  32. monotonic_align/__init__.py +19 -0
  33. monotonic_align/__pycache__/__init__.cpython-310.pyc +0 -0
  34. monotonic_align/build/lib.win-amd64-cpython-310/monotonic_align/core.cp310-win_amd64.pyd +0 -0
  35. monotonic_align/build/temp.win-amd64-cpython-310/Release/core.cp310-win_amd64.exp +0 -0
  36. monotonic_align/build/temp.win-amd64-cpython-310/Release/core.cp310-win_amd64.lib +0 -0
  37. monotonic_align/build/temp.win-amd64-cpython-310/Release/core.obj +0 -0
  38. monotonic_align/core.c +0 -0
  39. monotonic_align/core.cp310-win_amd64.pyd +0 -0
  40. monotonic_align/core.pyx +42 -0
  41. monotonic_align/monotonic_align/core.cp310-win_amd64.pyd +0 -0
  42. monotonic_align/setup.py +9 -0
  43. preprocess.py +25 -0
  44. requirements.txt +13 -0
  45. text/LICENSE +19 -0
  46. text/__init__.py +56 -0
  47. text/__pycache__/__init__.cpython-310.pyc +0 -0
  48. text/__pycache__/cleaners.cpython-310.pyc +0 -0
  49. text/__pycache__/japanese.cpython-310.pyc +0 -0
  50. text/__pycache__/symbols.cpython-310.pyc +0 -0
.gitignore ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DUMMY1
2
+ DUMMY2
3
+ DUMMY3
4
+ logs
5
+ __pycache__
6
+ .ipynb_checkpoints
7
+ .*.swp
8
+
9
+ build
10
+ *.c
11
+ monotonic_align/monotonic_align
12
+ /.vs/vits/FileContentIndex
13
+ configs/dracu_japanese_base2.json
14
+ configs/tolove_japanese_base2.json
15
+
16
+ .idea
File_System.ipynb ADDED
@@ -0,0 +1,487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "collapsed_sections": [
8
+ "3jNjgQ0JlCCL"
9
+ ]
10
+ },
11
+ "kernelspec": {
12
+ "name": "python3",
13
+ "display_name": "Python 3"
14
+ },
15
+ "language_info": {
16
+ "name": "python"
17
+ }
18
+ },
19
+ "cells": [
20
+ {
21
+ "cell_type": "code",
22
+ "source": [
23
+ "import gradio as gr\n",
24
+ "import torch\n",
25
+ "print(gr.__version__)\n",
26
+ "print(torch.__version__)"
27
+ ],
28
+ "metadata": {
29
+ "colab": {
30
+ "base_uri": "https://localhost:8080/"
31
+ },
32
+ "id": "W70gW3rnp1QP",
33
+ "outputId": "60be638b-06cd-4b33-e63d-6e5dc5237ca8"
34
+ },
35
+ "execution_count": 2,
36
+ "outputs": [
37
+ {
38
+ "name": "stdout",
39
+ "output_type": "stream",
40
+ "text": [
41
+ "3.23.0\n",
42
+ "1.13.1\n"
43
+ ]
44
+ }
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "source": [
50
+ "from pathlib import Path\n",
51
+ "\n",
52
+ "MODEL_PATH = Path(\"models\") \n",
53
+ "MODEL_PATH.mkdir(parents=True, exist_ok=True)"
54
+ ],
55
+ "metadata": {
56
+ "id": "X-8HUWxxcVHr"
57
+ },
58
+ "execution_count": 3,
59
+ "outputs": []
60
+ },
61
+ {
62
+ "cell_type": "code",
63
+ "source": [
64
+ "import json\n",
65
+ "from PIL import Image\n",
66
+ "import numpy as np\n",
67
+ "import os\n",
68
+ "\n",
69
+ "with open(\"models/model_info.json\", \"r\", encoding=\"utf-8\") as f:\n",
70
+ " models_info = json.load(f)\n",
71
+ "\n",
72
+ "\n",
73
+ "\n",
74
+ "LANGUAGES = ['EN','CN','JP']\n",
75
+ "speaker_id = 0\n",
76
+ "\n",
77
+ "\n"
78
+ ],
79
+ "metadata": {
80
+ "id": "VGacf2W4AjYm"
81
+ },
82
+ "execution_count": 37,
83
+ "outputs": []
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "execution_count": 20,
88
+ "outputs": [],
89
+ "source": [
90
+ "class CustomEncoder(json.JSONEncoder):\n",
91
+ " def default(self, obj):\n",
92
+ " if isinstance(obj, Path):\n",
93
+ " return str(obj)\n",
94
+ " return super().default(obj)\n"
95
+ ],
96
+ "metadata": {
97
+ "collapsed": false
98
+ }
99
+ },
100
+ {
101
+ "cell_type": "code",
102
+ "source": [
103
+ "def add_model_fn(example_text, cover, SpeakerID, name_en, name_cn, language):\n",
104
+ "\n",
105
+ "\n",
106
+ "\n",
107
+ " # 检查必填字段是否为空\n",
108
+ " if not speaker_id or not name_en or not language:\n",
109
+ " raise gr.Error(\"Please fill in all required fields!\")\n",
110
+ " return \"Failed to add model\"\n",
111
+ "\n",
112
+ "\n",
113
+ "\n",
114
+ "\n",
115
+ " ### 保存上传的文件\n",
116
+ "\n",
117
+ " # 生成文件路径\n",
118
+ " model_save_dir = Path(\"models\")\n",
119
+ " model_save_dir = model_save_dir / name_en\n",
120
+ " img_save_dir = model_save_dir\n",
121
+ " model_save_dir.mkdir(parents=True, exist_ok=True)\n",
122
+ "\n",
123
+ " #shutil.copyfile(file.value,Model_save_path)\n",
124
+ "\n",
125
+ " # file_data = file.data[0]\n",
126
+ " # filename = secure_filename(file_data.name)\n",
127
+ " # filepath = os.path.join(\"models\", name_en, filename)\n",
128
+ " # os.makedirs(os.path.dirname(filepath), exist_ok=True)\n",
129
+ "\n",
130
+ "\n",
131
+ " # 保存checkpoints 和 cover\n",
132
+ " #tensor = torch.FloatTensor(file)\n",
133
+ " Model_name = name_en + \".pth\"\n",
134
+ " model_save_dir = model_save_dir / Model_name\n",
135
+ " #torch.save(tensor, Model_save_path)\n",
136
+ "\n",
137
+ " #\n",
138
+ " # # convert to RGB format if necessary\n",
139
+ " # if len(img.shape) == 2 or img.shape[2] == 1:\n",
140
+ " # img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGBA)\n",
141
+ " # else:\n",
142
+ " # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)\n",
143
+ " #\n",
144
+ " # cv2.imwrite(str(img_save_dir / \"cover.png\"), img)\n",
145
+ "\n",
146
+ " if cover is not None:\n",
147
+ " img = np.array(cover)\n",
148
+ " img = Image.fromarray(img)\n",
149
+ " img.save(os.path.join(img_save_dir, 'cover.png'))\n",
150
+ "\n",
151
+ "\n",
152
+ " \n",
153
+ " #获取用户输入\n",
154
+ " new_model = {\n",
155
+ " \"name_en\": name_en,\n",
156
+ " \"name_zh\": name_cn,\n",
157
+ " \"cover\": img_save_dir / \"cover.png\",\n",
158
+ " \"sid\": SpeakerID,\n",
159
+ " \"example\": \"それに新しいお菓子屋さんも出来てみんな買いものを楽しんでいます!\",\n",
160
+ " \"language\": language,\n",
161
+ " \"type\": \"single\",\n",
162
+ " \"model_path\": model_save_dir\n",
163
+ " }\n",
164
+ "\n",
165
+ "\n",
166
+ "\n",
167
+ " with open(\"models/model_info.json\", \"r\", encoding=\"utf-8\") as f:\n",
168
+ " models_info = json.load(f)\n",
169
+ "\n",
170
+ " models_info[name_en] = new_model\n",
171
+ " with open(\"models/model_info.json\", \"w\") as f:\n",
172
+ " json.dump(models_info, f, cls=CustomEncoder)\n",
173
+ "\n",
174
+ "\n",
175
+ "\n",
176
+ "\n",
177
+ "\n",
178
+ "\n",
179
+ "\n",
180
+ "\n",
181
+ " #return file.\n",
182
+ " return \"Success\"\n"
183
+ ],
184
+ "metadata": {
185
+ "id": "3dynM_kkBytx"
186
+ },
187
+ "execution_count": 105,
188
+ "outputs": []
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": 102,
193
+ "outputs": [],
194
+ "source": [
195
+ "def clear_add_model_info():\n",
196
+ " return \"\",None,\"\",\"\",\"\",\"\""
197
+ ],
198
+ "metadata": {
199
+ "collapsed": false
200
+ }
201
+ },
202
+ {
203
+ "cell_type": "code",
204
+ "execution_count": 104,
205
+ "outputs": [
206
+ {
207
+ "name": "stdout",
208
+ "output_type": "stream",
209
+ "text": [
210
+ "Running on local URL: http://127.0.0.1:7880\n",
211
+ "\n",
212
+ "To create a public link, set `share=True` in `launch()`.\n"
213
+ ]
214
+ },
215
+ {
216
+ "data": {
217
+ "text/plain": "<IPython.core.display.HTML object>",
218
+ "text/html": "<div><iframe src=\"http://127.0.0.1:7880/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
219
+ },
220
+ "metadata": {},
221
+ "output_type": "display_data"
222
+ },
223
+ {
224
+ "name": "stdout",
225
+ "output_type": "stream",
226
+ "text": [
227
+ "Keyboard interruption in main thread... closing server.\n"
228
+ ]
229
+ },
230
+ {
231
+ "data": {
232
+ "text/plain": ""
233
+ },
234
+ "execution_count": 104,
235
+ "metadata": {},
236
+ "output_type": "execute_result"
237
+ }
238
+ ],
239
+ "source": [
240
+ "theme = gr.themes.Base()\n",
241
+ "\n",
242
+ "with gr.Blocks(theme=theme) as interface:\n",
243
+ " with gr.Tab(\"Settings\"):\n",
244
+ " with gr.Box():\n",
245
+ " gr.Markdown(\"\"\"# Select Model\"\"\")\n",
246
+ " with gr.Row():\n",
247
+ "\n",
248
+ " with gr.Column(scale = 5):\n",
249
+ " model_choice = gr.Dropdown(label = \"Model\",\n",
250
+ " choices=[(model[\"name_en\"]) for name, model in models_info.items()],\n",
251
+ " interactive=True,\n",
252
+ " value=models_info['yuuka']['name_en']\n",
253
+ " )\n",
254
+ " with gr.Column(scale = 5):\n",
255
+ " speaker_id = gr.Dropdown(label = \"Speaker ID\",\n",
256
+ " choices=[(str(model[\"sid\"])) for name, model in models_info.items()],\n",
257
+ " interactive=True,\n",
258
+ " value=str(models_info['yuuka']['sid'])\n",
259
+ " )\n",
260
+ "\n",
261
+ " with gr.Column(scale = 1):\n",
262
+ " refresh_button = gr.Button(\"Refresh\", variant=\"primary\")\n",
263
+ " reset_button = gr.Button(\"Reset\")\n",
264
+ "\n",
265
+ " with gr.Box():\n",
266
+ " gr.Markdown(\"# Add Model\\n\"\n",
267
+ " \"> *为必填选项\\n\"\n",
268
+ " \"> 添加完成后将**checkpoints**文件放到对应生成的文件夹中\"\n",
269
+ " )\n",
270
+ "\n",
271
+ "\n",
272
+ " with gr.Row():\n",
273
+ " # file = gr.Files(label = \"VITS Model*\", file_types=[\".pth\"])\n",
274
+ " example_text = gr.Textbox(label = \"Example Text\",\n",
275
+ " lines=16,\n",
276
+ " placeholder=\"Enter the example text here\",)\n",
277
+ " model_cover = gr.Image(label = \"Cover\")\n",
278
+ "\n",
279
+ " with gr.Column():\n",
280
+ " model_speaker_id = gr.Textbox(label = \"Speaker List*\",\n",
281
+ " placeholder=\"Single speaker model default=0\")\n",
282
+ " model_name_en = gr.Textbox(label = \"name_en*\")\n",
283
+ " model_name_cn = gr.Textbox(label = \"name_cn\")\n",
284
+ " model_language = gr.Dropdown(label = \"Language*\",\n",
285
+ " choices=LANGUAGES,\n",
286
+ " interactive=True)\n",
287
+ " with gr.Row():\n",
288
+ " add_model_button = gr.Button(\"Add Model\", variant=\"primary\")\n",
289
+ " clear_add_model_button = gr.Button(\"Clear\")\n",
290
+ " with gr.Box():\n",
291
+ " with gr.Row():\n",
292
+ " message_box = gr.Textbox(label = \"Message\")\n",
293
+ "\n",
294
+ "\n",
295
+ "\n",
296
+ " add_model_button.click(add_model_fn,\n",
297
+ " inputs = [example_text, model_cover, model_speaker_id, model_name_en, model_name_cn, model_language],\n",
298
+ " outputs = message_box\n",
299
+ " )\n",
300
+ " clear_add_model_button.click(clear_add_model_info,\n",
301
+ " outputs = [example_text, model_cover, model_speaker_id, model_name_en, model_name_cn, model_language]\n",
302
+ " )\n",
303
+ "\n",
304
+ "interface.queue(concurrency_count=1).launch(debug=True)"
305
+ ],
306
+ "metadata": {
307
+ "collapsed": false
308
+ }
309
+ },
310
+ {
311
+ "cell_type": "code",
312
+ "execution_count": 62,
313
+ "outputs": [
314
+ {
315
+ "name": "stdout",
316
+ "output_type": "stream",
317
+ "text": [
318
+ "Running on local URL: http://127.0.0.1:7866\n",
319
+ "\n",
320
+ "To create a public link, set `share=True` in `launch()`.\n"
321
+ ]
322
+ },
323
+ {
324
+ "data": {
325
+ "text/plain": "<IPython.core.display.HTML object>",
326
+ "text/html": "<div><iframe src=\"http://127.0.0.1:7866/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
327
+ },
328
+ "metadata": {},
329
+ "output_type": "display_data"
330
+ },
331
+ {
332
+ "name": "stderr",
333
+ "output_type": "stream",
334
+ "text": [
335
+ "Traceback (most recent call last):\n",
336
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\routes.py\", line 394, in run_predict\n",
337
+ " output = await app.get_blocks().process_api(\n",
338
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\blocks.py\", line 1075, in process_api\n",
339
+ " result = await self.call_function(\n",
340
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\blocks.py\", line 884, in call_function\n",
341
+ " prediction = await anyio.to_thread.run_sync(\n",
342
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\to_thread.py\", line 31, in run_sync\n",
343
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
344
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 937, in run_sync_in_worker_thread\n",
345
+ " return await future\n",
346
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 867, in run\n",
347
+ " result = context.run(func, *args)\n",
348
+ " File \"C:\\Users\\l4227\\AppData\\Local\\Temp\\ipykernel_11412\\3513495185.py\", line 4, in file_upload\n",
349
+ " return file.name\n",
350
+ "AttributeError: 'list' object has no attribute 'name'\n"
351
+ ]
352
+ },
353
+ {
354
+ "name": "stdout",
355
+ "output_type": "stream",
356
+ "text": [
357
+ "Keyboard interruption in main thread... closing server.\n"
358
+ ]
359
+ },
360
+ {
361
+ "data": {
362
+ "text/plain": ""
363
+ },
364
+ "execution_count": 62,
365
+ "metadata": {},
366
+ "output_type": "execute_result"
367
+ }
368
+ ],
369
+ "source": [
370
+ "import gradio as gr\n",
371
+ "\n",
372
+ "def file_upload(file):\n",
373
+ " return file.name\n",
374
+ "\n",
375
+ "\n",
376
+ "with gr.Blocks() as interface:\n",
377
+ "\n",
378
+ " a = gr.Files(label = \"VITS Model*\", file_types=[\".pth\"])\n",
379
+ " b = gr.Files(label = \"Cover\", file_types=[\".png\"])\n",
380
+ " c = gr.Button()\n",
381
+ " d = gr.Textbox()\n",
382
+ "\n",
383
+ " c.click(fn=file_upload,inputs=a,outputs=d)\n",
384
+ "\n",
385
+ "\n",
386
+ "interface.queue(concurrency_count=1).launch(debug=True)"
387
+ ],
388
+ "metadata": {
389
+ "collapsed": false
390
+ }
391
+ },
392
+ {
393
+ "cell_type": "code",
394
+ "execution_count": 66,
395
+ "outputs": [
396
+ {
397
+ "name": "stdout",
398
+ "output_type": "stream",
399
+ "text": [
400
+ "Running on local URL: http://127.0.0.1:7867\n",
401
+ "\n",
402
+ "To create a public link, set `share=True` in `launch()`.\n"
403
+ ]
404
+ },
405
+ {
406
+ "data": {
407
+ "text/plain": "<IPython.core.display.HTML object>",
408
+ "text/html": "<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
409
+ },
410
+ "metadata": {},
411
+ "output_type": "display_data"
412
+ },
413
+ {
414
+ "data": {
415
+ "text/plain": ""
416
+ },
417
+ "execution_count": 66,
418
+ "metadata": {},
419
+ "output_type": "execute_result"
420
+ }
421
+ ],
422
+ "source": [
423
+ "import gradio as gr\n",
424
+ "\n",
425
+ "def file_upload(file):\n",
426
+ " return file.name\n",
427
+ "\n",
428
+ "iface = gr.Interface(fn=file_upload, inputs=\"file\", outputs=\"text\")\n",
429
+ "iface.launch()"
430
+ ],
431
+ "metadata": {
432
+ "collapsed": false
433
+ }
434
+ },
435
+ {
436
+ "cell_type": "code",
437
+ "execution_count": 65,
438
+ "outputs": [
439
+ {
440
+ "name": "stderr",
441
+ "output_type": "stream",
442
+ "text": [
443
+ "D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
444
+ " warnings.warn(value)\n",
445
+ "D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\deprecation.py:40: UserWarning: `keep_filename` parameter is deprecated, and it has no effect\n",
446
+ " warnings.warn(value)\n"
447
+ ]
448
+ },
449
+ {
450
+ "ename": "AttributeError",
451
+ "evalue": "module 'gradio.outputs' has no attribute 'Text'",
452
+ "output_type": "error",
453
+ "traceback": [
454
+ "\u001B[1;31m---------------------------------------------------------------------------\u001B[0m",
455
+ "\u001B[1;31mAttributeError\u001B[0m Traceback (most recent call last)",
456
+ "Cell \u001B[1;32mIn[65], line 8\u001B[0m\n\u001B[0;32m 5\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m/path/to/output/file.txt\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[0;32m 7\u001B[0m input_file \u001B[38;5;241m=\u001B[39m gr\u001B[38;5;241m.\u001B[39minputs\u001B[38;5;241m.\u001B[39mFile()\n\u001B[1;32m----> 8\u001B[0m output_file_path \u001B[38;5;241m=\u001B[39m \u001B[43mgr\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43moutputs\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mText\u001B[49m(\u001B[38;5;28mtype\u001B[39m\u001B[38;5;241m=\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mfile\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[0;32m 10\u001B[0m gr\u001B[38;5;241m.\u001B[39mInterface(get_file_path, inputs\u001B[38;5;241m=\u001B[39minput_file, outputs\u001B[38;5;241m=\u001B[39moutput_file_path)\u001B[38;5;241m.\u001B[39mlaunch()\n",
457
+ "\u001B[1;31mAttributeError\u001B[0m: module 'gradio.outputs' has no attribute 'Text'"
458
+ ]
459
+ }
460
+ ],
461
+ "source": [
462
+ "import gradio as gr\n",
463
+ "\n",
464
+ "def get_file_path(input_file):\n",
465
+ " # do something with input file\n",
466
+ " return \"/path/to/output/file.txt\"\n",
467
+ "\n",
468
+ "input_file = gr.inputs.File()\n",
469
+ "output_file_path = gr.outputs.Text(type=\"file\")\n",
470
+ "\n",
471
+ "gr.Interface(get_file_path, inputs=input_file, outputs=output_file_path).launch()\n"
472
+ ],
473
+ "metadata": {
474
+ "collapsed": false
475
+ }
476
+ },
477
+ {
478
+ "cell_type": "code",
479
+ "execution_count": null,
480
+ "outputs": [],
481
+ "source": [],
482
+ "metadata": {
483
+ "collapsed": false
484
+ }
485
+ }
486
+ ]
487
+ }
GUI_Usage.ipynb ADDED
@@ -0,0 +1,1138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "1cRKuRl7Z8Nj"
7
+ },
8
+ "source": [
9
+ "# Requirment"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": 1,
15
+ "metadata": {
16
+ "colab": {
17
+ "background_save": true
18
+ },
19
+ "id": "ouQGqsHfsDv6",
20
+ "outputId": "8a464347-c2ba-489e-8f45-3707e9ba2e1d"
21
+ },
22
+ "outputs": [
23
+ {
24
+ "name": "stdout",
25
+ "output_type": "stream",
26
+ "text": [
27
+ "G:\\AI\\VITS_WebUI\\monotonic_align\n",
28
+ "running build_ext\n",
29
+ "copying build\\lib.win-amd64-3.9\\monotonic_align\\core.cp39-win_amd64.pyd -> monotonic_align\n",
30
+ "G:\\AI\\VITS_WebUI\n"
31
+ ]
32
+ }
33
+ ],
34
+ "source": [
35
+ "%cd G:\\AI\\VITS_WebUI\\monotonic_align\n",
36
+ "!python setup.py build_ext --inplace\n",
37
+ "%cd .."
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": 2,
43
+ "outputs": [
44
+ {
45
+ "name": "stdout",
46
+ "output_type": "stream",
47
+ "text": [
48
+ "Fri Apr 21 22:47:53 2023 \n",
49
+ "+---------------------------------------------------------------------------------------+\n",
50
+ "| NVIDIA-SMI 531.14 Driver Version: 531.14 CUDA Version: 12.1 |\n",
51
+ "|-----------------------------------------+----------------------+----------------------+\n",
52
+ "| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
53
+ "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
54
+ "| | | MIG M. |\n",
55
+ "|=========================================+======================+======================|\n",
56
+ "| 0 NVIDIA GeForce RTX 3060 WDDM | 00000000:01:00.0 On | N/A |\n",
57
+ "| 0% 33C P8 20W / 170W| 8114MiB / 12288MiB | 32% Default |\n",
58
+ "| | | N/A |\n",
59
+ "+-----------------------------------------+----------------------+----------------------+\n",
60
+ " \n",
61
+ "+---------------------------------------------------------------------------------------+\n",
62
+ "| Processes: |\n",
63
+ "| GPU GI CI PID Type Process name GPU Memory |\n",
64
+ "| ID ID Usage |\n",
65
+ "|=======================================================================================|\n",
66
+ "| 0 N/A N/A 5040 C+G ...\\cef\\cef.win7x64\\steamwebhelper.exe N/A |\n",
67
+ "| 0 N/A N/A 5872 C+G ...on\\wallpaper_engine\\wallpaper32.exe N/A |\n",
68
+ "| 0 N/A N/A 7144 C+G ....0_x64__kzh8wxbdkxb8p\\DCv2\\DCv2.exe N/A |\n",
69
+ "| 0 N/A N/A 8724 C+G C:\\Windows\\explorer.exe N/A |\n",
70
+ "| 0 N/A N/A 9632 C+G ....Search_cw5n1h2txyewy\\SearchApp.exe N/A |\n",
71
+ "| 0 N/A N/A 9704 C+G D:\\CloudMusic\\cloudmusic.exe N/A |\n",
72
+ "| 0 N/A N/A 9812 C+G ...2txyewy\\StartMenuExperienceHost.exe N/A |\n",
73
+ "| 0 N/A N/A 10872 C+G ...0.0_x64__p7pnf6hceqser\\snipaste.exe N/A |\n",
74
+ "| 0 N/A N/A 11900 C+G D:\\Typora\\Typora.exe N/A |\n",
75
+ "| 0 N/A N/A 12268 C+G ...t.LockApp_cw5n1h2txyewy\\LockApp.exe N/A |\n",
76
+ "| 0 N/A N/A 13320 C+G ...rPicker\\PowerToys.ColorPickerUI.exe N/A |\n",
77
+ "| 0 N/A N/A 13600 C+G ...FancyZones\\PowerToys.FancyZones.exe N/A |\n",
78
+ "| 0 N/A N/A 13660 C+G ...5n1h2txyewy\\ShellExperienceHost.exe N/A |\n",
79
+ "| 0 N/A N/A 13904 C+G D:\\Eagle\\Eagle.exe N/A |\n",
80
+ "| 0 N/A N/A 16220 C+G ...GeForce Experience\\NVIDIA Share.exe N/A |\n",
81
+ "| 0 N/A N/A 16240 C+G ...GeForce Experience\\NVIDIA Share.exe N/A |\n",
82
+ "| 0 N/A N/A 16332 C+G ...CBS_cw5n1h2txyewy\\TextInputHost.exe N/A |\n",
83
+ "| 0 N/A N/A 17608 C+G ...B\\system_tray\\lghub_system_tray.exe N/A |\n",
84
+ "| 0 N/A N/A 17696 C+G C:\\Program Files\\LGHUB\\lghub.exe N/A |\n",
85
+ "| 0 N/A N/A 20848 C+G ...oogle\\Chrome\\Application\\chrome.exe N/A |\n",
86
+ "| 0 N/A N/A 23484 C+G ...auncher\\PowerToys.PowerLauncher.exe N/A |\n",
87
+ "| 0 N/A N/A 26616 C+G D:\\motrix\\Motrix.exe N/A |\n",
88
+ "| 0 N/A N/A 27388 C+G D:\\BaiduNetdisk\\baidunetdiskrender.exe N/A |\n",
89
+ "| 0 N/A N/A 28064 C+G ...on\\112.0.1722.39\\msedgewebview2.exe N/A |\n",
90
+ "| 0 N/A N/A 28988 C+G ...3\\extracted\\runtime\\WeChatAppEx.exe N/A |\n",
91
+ "| 0 N/A N/A 32628 C+G D:\\RaiDrive\\RaiDrive.exe N/A |\n",
92
+ "| 0 N/A N/A 34352 C+G ...1.0_x64__8wekyb3d8bbwe\\Video.UI.exe N/A |\n",
93
+ "| 0 N/A N/A 64972 C+G ...ft Office\\root\\Office16\\WINWORD.EXE N/A |\n",
94
+ "| 0 N/A N/A 86756 C+G ..._8wekyb3d8bbwe\\Microsoft.Photos.exe N/A |\n",
95
+ "| 0 N/A N/A 159156 C+G ...siveControlPanel\\SystemSettings.exe N/A |\n",
96
+ "| 0 N/A N/A 186184 C+G ...9.0.0_x64__gqbn7fs4pywxm\\Db.App.exe N/A |\n",
97
+ "| 0 N/A N/A 326192 C+G ...les\\Microsoft OneDrive\\OneDrive.exe N/A |\n",
98
+ "| 0 N/A N/A 366360 C+G ...ekyb3d8bbwe\\PhoneExperienceHost.exe N/A |\n",
99
+ "| 0 N/A N/A 455764 C+G ...-ins\\Spaces\\Adobe Spaces Helper.exe N/A |\n",
100
+ "| 0 N/A N/A 456280 C+G ...obe Photoshop CC 2019\\Photoshop.exe N/A |\n",
101
+ "| 0 N/A N/A 456496 C+G ...CEP\\CEPHtmlEngine\\CEPHtmlEngine.exe N/A |\n",
102
+ "| 0 N/A N/A 469488 C+G ...t Office\\root\\Office16\\POWERPNT.EXE N/A |\n",
103
+ "| 0 N/A N/A 493720 C+G ...rm 2022.3.2\\jbr\\bin\\jcef_helper.exe N/A |\n",
104
+ "| 0 N/A N/A 498508 C+G ...crosoft\\Edge\\Application\\msedge.exe N/A |\n",
105
+ "+---------------------------------------------------------------------------------------+\n"
106
+ ]
107
+ }
108
+ ],
109
+ "source": [
110
+ "!nvidia-smi"
111
+ ],
112
+ "metadata": {
113
+ "collapsed": false
114
+ }
115
+ },
116
+ {
117
+ "cell_type": "markdown",
118
+ "metadata": {
119
+ "id": "SxpEIauJZ0s6"
120
+ },
121
+ "source": [
122
+ "# Settings"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "code",
127
+ "execution_count": 3,
128
+ "metadata": {
129
+ "cellView": "form",
130
+ "id": "v10x1lO7Z5AK"
131
+ },
132
+ "outputs": [],
133
+ "source": [
134
+ "#@title Edit config\n",
135
+ "import json\n",
136
+ "batchsize = 16 #@param {type:\"number\"}\n",
137
+ "training_files = \"filelists/yuuka_train.txt.cleaned\" #@param {type:\"string\"}\n",
138
+ "validation_files = \"filelists/yuuka_val.txt.cleaned\" #@param {type:\"string\"}\n",
139
+ "config = json.load(open(\"configs/config.json\"))\n",
140
+ "config['train']['batch_size'] = batchsize\n",
141
+ "config['data']['training_files'] = training_files\n",
142
+ "config['data']['validation_files'] = validation_files\n",
143
+ "with open(\"configs/config.json\", 'w+') as f:\n",
144
+ " json.dump(config, f, indent=4)"
145
+ ]
146
+ },
147
+ {
148
+ "cell_type": "markdown",
149
+ "metadata": {
150
+ "id": "XBNba8Qpa7XF"
151
+ },
152
+ "source": [
153
+ "# GUI"
154
+ ]
155
+ },
156
+ {
157
+ "cell_type": "code",
158
+ "execution_count": 4,
159
+ "metadata": {
160
+ "id": "zF5IUSAQa_EB"
161
+ },
162
+ "outputs": [],
163
+ "source": [
164
+ "import gradio as gr\n",
165
+ "import numpy as np"
166
+ ]
167
+ },
168
+ {
169
+ "cell_type": "code",
170
+ "execution_count": 5,
171
+ "metadata": {
172
+ "id": "gcO8hd1Jr2t6"
173
+ },
174
+ "outputs": [],
175
+ "source": [
176
+ "%matplotlib inline\n",
177
+ "import matplotlib.pyplot as plt\n",
178
+ "import IPython.display as ipd\n",
179
+ "import os\n",
180
+ "import json\n",
181
+ "import math\n",
182
+ "import torch\n",
183
+ "import commons\n",
184
+ "import utils\n",
185
+ "from models import SynthesizerTrn\n",
186
+ "from text.symbols import symbols\n",
187
+ "from text import text_to_sequence\n",
188
+ "from scipy.io.wavfile import write\n",
189
+ "from gradio.processing_utils import download_tmp_copy_of_file\n",
190
+ "from PIL import Image\n",
191
+ "import numpy as np\n",
192
+ "import os\n",
193
+ "from pathlib import Path\n",
194
+ "import openai\n",
195
+ "\n"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": 6,
201
+ "metadata": {
202
+ "id": "tp-8n_YBg5FN"
203
+ },
204
+ "outputs": [],
205
+ "source": [
206
+ "LANGUAGES = ['EN','CN','JP']\n",
207
+ "SPEAKER_ID = 0\n",
208
+ "COVER = \"models/Yuuka/cover.png\"\n",
209
+ "speaker_choice = \"Yuuka\"\n",
210
+ "MODEL_ZH_NAME = \"早濑优香\"\n",
211
+ "EXAMPLE_TEXT = \"先生。今日も全力であなたをアシストしますね。\"\n",
212
+ "USER_INPUT_TEXT = \"\""
213
+ ]
214
+ },
215
+ {
216
+ "cell_type": "code",
217
+ "execution_count": 8,
218
+ "outputs": [
219
+ {
220
+ "name": "stdout",
221
+ "output_type": "stream",
222
+ "text": [
223
+ "INFO:root:Loaded checkpoint 'models/Yuuka/Yuuka.pth' (iteration 445)\n"
224
+ ]
225
+ }
226
+ ],
227
+ "source": [
228
+ "CONFIG_PATH = \"configs/config.json\"\n",
229
+ "MODEL_PATH = \"models/Yuuka/Yuuka.pth\"\n",
230
+ "\n",
231
+ "hps = utils.get_hparams_from_file(CONFIG_PATH)\n",
232
+ "net_g = SynthesizerTrn(\n",
233
+ " len(hps.symbols),\n",
234
+ " hps.data.filter_length // 2 + 1,\n",
235
+ " hps.train.segment_size // hps.data.hop_length,\n",
236
+ " n_speakers=hps.data.n_speakers,\n",
237
+ " **hps.model).cuda()\n",
238
+ "\n",
239
+ "model = net_g.eval()\n",
240
+ "model = utils.load_checkpoint(MODEL_PATH, net_g, None)\n",
241
+ "\n",
242
+ "def tts_fn(text, noise_scale, noise_scale_w, length_scale):\n",
243
+ " stn_tst = get_text(text, hps)\n",
244
+ " with torch.no_grad():\n",
245
+ " x_tst = stn_tst.cuda().unsqueeze(0)\n",
246
+ " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
247
+ " sid = torch.LongTensor([SPEAKER_ID]).cuda()\n",
248
+ " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()\n",
249
+ " return (22050, audio)"
250
+ ],
251
+ "metadata": {
252
+ "collapsed": false
253
+ }
254
+ },
255
+ {
256
+ "cell_type": "code",
257
+ "execution_count": 9,
258
+ "outputs": [],
259
+ "source": [
260
+ "with open(\"models/model_info.json\", \"r\", encoding=\"utf-8\") as f:\n",
261
+ " models_info = json.load(f)\n",
262
+ "\n",
263
+ "for i,model_info in models_info.items():\n",
264
+ " name_en = model_info['name_en']"
265
+ ],
266
+ "metadata": {
267
+ "collapsed": false
268
+ }
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": 10,
273
+ "outputs": [],
274
+ "source": [
275
+ "def load_model():\n",
276
+ " global hps,net_g,model\n",
277
+ "\n",
278
+ " hps = utils.get_hparams_from_file(CONFIG_PATH)\n",
279
+ " net_g = SynthesizerTrn(\n",
280
+ " len(hps.symbols),\n",
281
+ " hps.data.filter_length // 2 + 1,\n",
282
+ " hps.train.segment_size // hps.data.hop_length,\n",
283
+ " n_speakers=hps.data.n_speakers,\n",
284
+ " **hps.model).cuda()\n",
285
+ "\n",
286
+ " model = net_g.eval()\n",
287
+ " model = utils.load_checkpoint(MODEL_PATH, net_g, None)"
288
+ ],
289
+ "metadata": {
290
+ "collapsed": false
291
+ }
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": 11,
296
+ "outputs": [],
297
+ "source": [
298
+ "def get_text(text, hps):\n",
299
+ " text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
300
+ " if hps.data.add_blank:\n",
301
+ " text_norm = commons.intersperse(text_norm, 0)\n",
302
+ " text_norm = torch.LongTensor(text_norm)\n",
303
+ " return text_norm"
304
+ ],
305
+ "metadata": {
306
+ "collapsed": false
307
+ }
308
+ },
309
+ {
310
+ "cell_type": "code",
311
+ "execution_count": 12,
312
+ "outputs": [],
313
+ "source": [
314
+ "def tts_fn(text, noise_scale, noise_scale_w, length_scale):\n",
315
+ " stn_tst = get_text(text, hps)\n",
316
+ " with torch.no_grad():\n",
317
+ " x_tst = stn_tst.cuda().unsqueeze(0)\n",
318
+ " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
319
+ " sid = torch.LongTensor([SPEAKER_ID]).cuda()\n",
320
+ " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()\n",
321
+ " return (22050, audio)"
322
+ ],
323
+ "metadata": {
324
+ "collapsed": false
325
+ }
326
+ },
327
+ {
328
+ "cell_type": "code",
329
+ "execution_count": 13,
330
+ "outputs": [],
331
+ "source": [
332
+ "def add_model_fn(example_text, cover, speakerID, name_en, name_cn, language):\n",
333
+ "\n",
334
+ " # 检查必填字段是否为空\n",
335
+ " if not SPEAKER_ID or not name_en or not language:\n",
336
+ " raise gr.Error(\"Please fill in all required fields!\")\n",
337
+ " return \"Failed to add model\"\n",
338
+ "\n",
339
+ " ### 保存上传的文件\n",
340
+ "\n",
341
+ " # 生成文件路径\n",
342
+ " model_save_dir = Path(\"models\")\n",
343
+ " model_save_dir = model_save_dir / name_en\n",
344
+ " img_save_dir = model_save_dir\n",
345
+ " model_save_dir.mkdir(parents=True, exist_ok=True)\n",
346
+ "\n",
347
+ " Model_name = name_en + \".pth\"\n",
348
+ " model_save_dir = model_save_dir / Model_name\n",
349
+ "\n",
350
+ " # 保存上传的图片\n",
351
+ " if cover is not None:\n",
352
+ " img = np.array(cover)\n",
353
+ " img = Image.fromarray(img)\n",
354
+ " img.save(os.path.join(img_save_dir, 'cover_white_background.png'))\n",
355
+ "\n",
356
+ " #获取用户输入\n",
357
+ " new_model = {\n",
358
+ " \"name_en\": name_en,\n",
359
+ " \"name_zh\": name_cn,\n",
360
+ " \"cover\": img_save_dir / \"cover.png\",\n",
361
+ " \"sid\": speakerID,\n",
362
+ " \"example\": example_text,\n",
363
+ " \"language\": language,\n",
364
+ " \"type\": \"single\",\n",
365
+ " \"model_path\": model_save_dir\n",
366
+ " }\n",
367
+ "\n",
368
+ " #写入json\n",
369
+ " with open(\"models/model_info.json\", \"r\", encoding=\"utf-8\") as f:\n",
370
+ " models_info = json.load(f)\n",
371
+ "\n",
372
+ " models_info[name_en] = new_model\n",
373
+ " with open(\"models/model_info.json\", \"w\") as f:\n",
374
+ " json.dump(models_info, f, cls=CustomEncoder)\n",
375
+ "\n",
376
+ "\n",
377
+ " return \"Success\""
378
+ ],
379
+ "metadata": {
380
+ "collapsed": false
381
+ }
382
+ },
383
+ {
384
+ "cell_type": "code",
385
+ "execution_count": 14,
386
+ "outputs": [],
387
+ "source": [
388
+ "def clear_input_text():\n",
389
+ " return \"\""
390
+ ],
391
+ "metadata": {
392
+ "collapsed": false
393
+ }
394
+ },
395
+ {
396
+ "cell_type": "code",
397
+ "execution_count": 15,
398
+ "outputs": [],
399
+ "source": [
400
+ "def clear_add_model_info():\n",
401
+ " return \"\",None,\"\",\"\",\"\",\"\""
402
+ ],
403
+ "metadata": {
404
+ "collapsed": false
405
+ }
406
+ },
407
+ {
408
+ "cell_type": "code",
409
+ "execution_count": 16,
410
+ "outputs": [],
411
+ "source": [
412
+ "def get_options():\n",
413
+ " with open(\"models/model_info.json\", \"r\", encoding=\"utf-8\") as f:\n",
414
+ " global models_info\n",
415
+ " models_info = json.load(f)\n",
416
+ "\n",
417
+ " for i,model_info in models_info.items():\n",
418
+ " global name_en\n",
419
+ " name_en = model_info['name_en']"
420
+ ],
421
+ "metadata": {
422
+ "collapsed": false
423
+ }
424
+ },
425
+ {
426
+ "cell_type": "code",
427
+ "execution_count": 17,
428
+ "outputs": [],
429
+ "source": [
430
+ "def reset_options():\n",
431
+ " value_model_choice = models_info['Yuuka']['name_en']\n",
432
+ " value_speaker_id = models_info['Yuuka']['sid']\n",
433
+ " return value_model_choice,value_speaker_id"
434
+ ],
435
+ "metadata": {
436
+ "collapsed": false
437
+ }
438
+ },
439
+ {
440
+ "cell_type": "code",
441
+ "execution_count": 18,
442
+ "outputs": [],
443
+ "source": [
444
+ "def refresh_options():\n",
445
+ " get_options()\n",
446
+ " value_model_choice = models_info[speaker_choice]['name_en']\n",
447
+ " value_speaker_id = models_info[speaker_choice]['sid']\n",
448
+ " return value_model_choice,value_speaker_id"
449
+ ],
450
+ "metadata": {
451
+ "collapsed": false
452
+ }
453
+ },
454
+ {
455
+ "cell_type": "code",
456
+ "execution_count": 19,
457
+ "outputs": [],
458
+ "source": [
459
+ "def change_dropdown(choice):\n",
460
+ " global speaker_choice\n",
461
+ " speaker_choice = choice\n",
462
+ " global COVER\n",
463
+ " COVER = str(models_info[speaker_choice]['cover'])\n",
464
+ " global MODEL_PATH\n",
465
+ " MODEL_PATH = str(models_info[speaker_choice]['model_path'])\n",
466
+ " global MODEL_ZH_NAME\n",
467
+ " MODEL_ZH_NAME = str(models_info[speaker_choice]['name_zh'])\n",
468
+ " global EXAMPLE_TEXT\n",
469
+ " EXAMPLE_TEXT = str(models_info[speaker_choice]['example'])\n",
470
+ "\n",
471
+ " speaker_id_change = gr.update(value=str(models_info[speaker_choice]['sid']))\n",
472
+ " cover_change = gr.update(value='<div align=\"center\">'\n",
473
+ " f'<img style=\"width:auto;height:512px;\" src=\"file/{COVER}\">' if COVER else \"\"\n",
474
+ " f'<a><strong>{speaker_choice}</strong></a>'\n",
475
+ " '</div>')\n",
476
+ " title_change = gr.update(value=\n",
477
+ " '<div align=\"center\">'\n",
478
+ " f'<h3><a><strong>{\"语音名称: \"}{MODEL_ZH_NAME}</strong></a>'\n",
479
+ " f'<h3><strong>{\"checkpoint: \"}{speaker_choice}</strong>'\n",
480
+ " '</div>')\n",
481
+ "\n",
482
+ "\n",
483
+ " lan_change = gr.update(value=str(models_info[speaker_choice]['language']))\n",
484
+ "\n",
485
+ " example_change = gr.update(value=EXAMPLE_TEXT)\n",
486
+ "\n",
487
+ " ChatGPT_cover_change = gr.update(value='<div align=\"center\">'\n",
488
+ " f'<img style=\"width:auto;height:512px;\" src=\"file/{COVER}\">' if COVER else \"\"\n",
489
+ " f'<a><strong>{speaker_choice}</strong></a>'\n",
490
+ " '</div>')\n",
491
+ " ChatGPT_title_change = gr.update(value=\n",
492
+ " '<div align=\"center\">'\n",
493
+ " f'<h3><a><strong>{\"语音名称: \"}{MODEL_ZH_NAME}</strong></a>'\n",
494
+ " f'<h3><strong>{\"checkpoint: \"}{speaker_choice}</strong>'\n",
495
+ " '</div>')\n",
496
+ "\n",
497
+ " load_model()\n",
498
+ "\n",
499
+ " return [speaker_id_change,cover_change,title_change,lan_change,example_change,cover_change,title_change,lan_change]"
500
+ ],
501
+ "metadata": {
502
+ "collapsed": false
503
+ }
504
+ },
505
+ {
506
+ "cell_type": "code",
507
+ "execution_count": 20,
508
+ "outputs": [],
509
+ "source": [
510
+ "def load_api_key(value):\n",
511
+ " openai.api_key = value"
512
+ ],
513
+ "metadata": {
514
+ "collapsed": false
515
+ }
516
+ },
517
+ {
518
+ "cell_type": "code",
519
+ "execution_count": 21,
520
+ "outputs": [],
521
+ "source": [
522
+ "def usr_input_update(value):\n",
523
+ " global USER_INPUT_TEXT\n",
524
+ " USER_INPUT_TEXT = value"
525
+ ],
526
+ "metadata": {
527
+ "collapsed": false
528
+ }
529
+ },
530
+ {
531
+ "cell_type": "code",
532
+ "execution_count": 22,
533
+ "outputs": [],
534
+ "source": [
535
+ "# def ChatGPT_Bot(history):\n",
536
+ "# response = openai.ChatCompletion.create(\n",
537
+ "# model=\"gpt-3.5-turbo\",\n",
538
+ "# messages=[\n",
539
+ "# {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n",
540
+ "# {\"role\": \"user\", \"content\": USER_INPUT_TEXT}\n",
541
+ "# ]\n",
542
+ "# )\n",
543
+ "#\n",
544
+ "# history[-1][1] = response['choices'][0]['message']['content']\n",
545
+ "#\n",
546
+ "# return history\n",
547
+ "\n",
548
+ "\n",
549
+ "\n",
550
+ "\n",
551
+ "def ChatGPT_Bot(history):\n",
552
+ " response = \"先生。今日も全力であなたをアシストしますね。\"\n",
553
+ "\n",
554
+ " history[-1][1] = response\n",
555
+ "\n",
556
+ " return history\n",
557
+ "\n",
558
+ "\n",
559
+ "\n",
560
+ "def bot(history):\n",
561
+ " last_input = history[-1][0]\n",
562
+ "\n",
563
+ " audio = tts_fn(last_input,0.6,0.668,1.0)\n",
564
+ " history[-1][1] = audio\n",
565
+ "\n",
566
+ " return history\n"
567
+ ],
568
+ "metadata": {
569
+ "collapsed": false
570
+ }
571
+ },
572
+ {
573
+ "cell_type": "code",
574
+ "execution_count": 23,
575
+ "outputs": [],
576
+ "source": [
577
+ "def add_text(history, text):\n",
578
+ " history = history + [(text, None)]\n",
579
+ " return history, \"\""
580
+ ],
581
+ "metadata": {
582
+ "collapsed": false
583
+ }
584
+ },
585
+ {
586
+ "cell_type": "code",
587
+ "execution_count": 24,
588
+ "outputs": [],
589
+ "source": [
590
+ "class CustomEncoder(json.JSONEncoder):\n",
591
+ " def default(self, obj):\n",
592
+ " if isinstance(obj, Path):\n",
593
+ " return str(obj)\n",
594
+ " return super().default(obj)"
595
+ ],
596
+ "metadata": {
597
+ "collapsed": false
598
+ }
599
+ },
600
+ {
601
+ "cell_type": "code",
602
+ "execution_count": 25,
603
+ "outputs": [],
604
+ "source": [
605
+ "download_audio_js = \"\"\"\n",
606
+ "() =>{{\n",
607
+ " let root = document.querySelector(\"body > gradio-app\");\n",
608
+ " if (root.shadowRoot != null)\n",
609
+ " root = root.shadowRoot;\n",
610
+ " let audio = root.querySelector(\"#tts-audio-{audio_id}\").querySelector(\"audio\");\n",
611
+ " let text = root.querySelector(\"#input-text-{audio_id}\").querySelector(\"textarea\");\n",
612
+ " if (audio == undefined)\n",
613
+ " return;\n",
614
+ " text = text.value;\n",
615
+ " if (text == undefined)\n",
616
+ " text = Math.floor(Math.random()*100000000);\n",
617
+ " audio = audio.src;\n",
618
+ " let oA = document.createElement(\"a\");\n",
619
+ " oA.download = text.substr(0, 20)+'.wav';\n",
620
+ " oA.href = audio;\n",
621
+ " document.body.appendChild(oA);\n",
622
+ " oA.click();\n",
623
+ " oA.remove();\n",
624
+ "}}\n",
625
+ "\"\"\""
626
+ ],
627
+ "metadata": {
628
+ "collapsed": false
629
+ }
630
+ },
631
+ {
632
+ "cell_type": "code",
633
+ "execution_count": 27,
634
+ "outputs": [
635
+ {
636
+ "name": "stdout",
637
+ "output_type": "stream",
638
+ "text": [
639
+ "DEBUG:markdown_it.rules_block.code:entering code: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
640
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
641
+ "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
642
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
643
+ "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): huggingface.co:443\n",
644
+ "DEBUG:markdown_it.rules_block.hr:entering hr: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
645
+ "DEBUG:markdown_it.rules_block.list:entering list: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
646
+ "DEBUG:markdown_it.rules_block.reference:entering reference: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
647
+ "DEBUG:markdown_it.rules_block.html_block:entering html_block: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
648
+ "DEBUG:markdown_it.rules_block.code:entering code: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
649
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
650
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
651
+ "DEBUG:markdown_it.rules_block.hr:entering hr: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
652
+ "DEBUG:markdown_it.rules_block.list:entering list: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
653
+ "DEBUG:markdown_it.rules_block.reference:entering reference: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
654
+ "DEBUG:markdown_it.rules_block.html_block:entering html_block: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
655
+ "DEBUG:markdown_it.rules_block.code:entering code: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
656
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
657
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
658
+ "DEBUG:markdown_it.rules_block.hr:entering hr: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
659
+ "DEBUG:markdown_it.rules_block.list:entering list: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
660
+ "DEBUG:markdown_it.rules_block.reference:entering reference: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
661
+ "DEBUG:markdown_it.rules_block.html_block:entering html_block: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
662
+ "DEBUG:markdown_it.rules_block.code:entering code: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
663
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
664
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
665
+ "DEBUG:markdown_it.rules_block.hr:entering hr: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
666
+ "DEBUG:markdown_it.rules_block.list:entering list: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
667
+ "DEBUG:markdown_it.rules_block.reference:entering reference: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
668
+ "DEBUG:markdown_it.rules_block.html_block:entering html_block: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
669
+ "DEBUG:markdown_it.rules_block.code:entering code: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
670
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
671
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
672
+ "DEBUG:markdown_it.rules_block.hr:entering hr: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
673
+ "DEBUG:markdown_it.rules_block.list:entering list: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
674
+ "DEBUG:markdown_it.rules_block.reference:entering reference: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
675
+ "DEBUG:markdown_it.rules_block.html_block:entering html_block: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
676
+ "DEBUG:markdown_it.rules_block.heading:entering heading: StateBlock(line=0,level=0,tokens=0), 0, 1, False\n",
677
+ "DEBUG:markdown_it.rules_block.code:entering code: StateBlock(line=0,level=0,tokens=0), 0, 3, False\n",
678
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=0,level=0,tokens=0), 0, 3, False\n",
679
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=0,level=0,tokens=0), 0, 3, False\n",
680
+ "DEBUG:markdown_it.rules_block.hr:entering hr: StateBlock(line=0,level=0,tokens=0), 0, 3, False\n",
681
+ "DEBUG:markdown_it.rules_block.list:entering list: StateBlock(line=0,level=0,tokens=0), 0, 3, False\n",
682
+ "DEBUG:markdown_it.rules_block.reference:entering reference: StateBlock(line=0,level=0,tokens=0), 0, 3, False\n",
683
+ "DEBUG:markdown_it.rules_block.html_block:entering html_block: StateBlock(line=0,level=0,tokens=0), 0, 3, False\n",
684
+ "DEBUG:markdown_it.rules_block.heading:entering heading: StateBlock(line=0,level=0,tokens=0), 0, 3, False\n",
685
+ "DEBUG:markdown_it.rules_block.code:entering code: StateBlock(line=1,level=0,tokens=3), 1, 3, False\n",
686
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=1,level=0,tokens=3), 1, 3, False\n",
687
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=1,level=0,tokens=3), 1, 3, False\n",
688
+ "DEBUG:markdown_it.rules_block.code:entering code: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
689
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
690
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
691
+ "DEBUG:markdown_it.rules_block.hr:entering hr: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
692
+ "DEBUG:markdown_it.rules_block.list:entering list: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
693
+ "DEBUG:markdown_it.rules_block.reference:entering reference: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
694
+ "DEBUG:markdown_it.rules_block.html_block:entering html_block: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
695
+ "DEBUG:markdown_it.rules_block.heading:entering heading: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
696
+ "DEBUG:markdown_it.rules_block.lheading:entering lheading: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
697
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
698
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
699
+ "DEBUG:markdown_it.rules_block.hr:entering hr: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
700
+ "DEBUG:markdown_it.rules_block.list:entering list: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
701
+ "DEBUG:markdown_it.rules_block.html_block:entering html_block: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
702
+ "DEBUG:markdown_it.rules_block.heading:entering heading: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
703
+ "DEBUG:markdown_it.rules_block.paragraph:entering paragraph: StateBlock(line=1,level=1,tokens=4), 1, 3, False\n",
704
+ "DEBUG:markdown_it.rules_block.fence:entering fence: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
705
+ "DEBUG:markdown_it.rules_block.blockquote:entering blockquote: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
706
+ "DEBUG:markdown_it.rules_block.hr:entering hr: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
707
+ "DEBUG:markdown_it.rules_block.list:entering list: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
708
+ "DEBUG:markdown_it.rules_block.html_block:entering html_block: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n",
709
+ "DEBUG:markdown_it.rules_block.heading:entering heading: StateBlock(line=1,level=1,tokens=4), 2, 3, True\n"
710
+ ]
711
+ },
712
+ {
713
+ "name": "stderr",
714
+ "output_type": "stream",
715
+ "text": [
716
+ "D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Textbox, please remove them: {'scale': 2}\n",
717
+ " warnings.warn(\n"
718
+ ]
719
+ },
720
+ {
721
+ "name": "stdout",
722
+ "output_type": "stream",
723
+ "text": [
724
+ "DEBUG:asyncio:Using selector: SelectSelector\n",
725
+ "DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 127.0.0.1:7860\n",
726
+ "DEBUG:urllib3.connectionpool:http://127.0.0.1:7860 \"GET /startup-events HTTP/1.1\" 200 5\n",
727
+ "DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 127.0.0.1:7860\n",
728
+ "DEBUG:urllib3.connectionpool:http://127.0.0.1:7860 \"HEAD / HTTP/1.1\" 200 0\n",
729
+ "Running on local URL: http://127.0.0.1:7860\n",
730
+ "\n",
731
+ "To create a public link, set `share=True` in `launch()`.\n"
732
+ ]
733
+ },
734
+ {
735
+ "data": {
736
+ "text/plain": "<IPython.core.display.HTML object>",
737
+ "text/html": "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
738
+ },
739
+ "metadata": {},
740
+ "output_type": "display_data"
741
+ },
742
+ {
743
+ "name": "stdout",
744
+ "output_type": "stream",
745
+ "text": [
746
+ "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
747
+ "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): huggingface.co:443\n",
748
+ "DEBUG:httpx._client:HTTP Request: POST http://127.0.0.1:7860/api/predict \"HTTP/1.1 200 OK\"\n",
749
+ "DEBUG:httpx._client:HTTP Request: POST http://127.0.0.1:7860/reset \"HTTP/1.1 200 OK\"\n"
750
+ ]
751
+ },
752
+ {
753
+ "name": "stderr",
754
+ "output_type": "stream",
755
+ "text": [
756
+ "D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\processing_utils.py:234: UserWarning: Trying to convert audio automatically from float32 to 16-bit int format.\n",
757
+ " warnings.warn(warning.format(data.dtype))\n"
758
+ ]
759
+ },
760
+ {
761
+ "name": "stdout",
762
+ "output_type": "stream",
763
+ "text": [
764
+ "DEBUG:httpx._client:HTTP Request: POST http://127.0.0.1:7860/api/predict \"HTTP/1.1 500 Internal Server Error\"\n",
765
+ "DEBUG:httpx._client:HTTP Request: POST http://127.0.0.1:7860/reset \"HTTP/1.1 200 OK\"\n"
766
+ ]
767
+ },
768
+ {
769
+ "name": "stderr",
770
+ "output_type": "stream",
771
+ "text": [
772
+ "Traceback (most recent call last):\n",
773
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\routes.py\", line 394, in run_predict\n",
774
+ " output = await app.get_blocks().process_api(\n",
775
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\blocks.py\", line 1075, in process_api\n",
776
+ " result = await self.call_function(\n",
777
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\blocks.py\", line 884, in call_function\n",
778
+ " prediction = await anyio.to_thread.run_sync(\n",
779
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\to_thread.py\", line 31, in run_sync\n",
780
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
781
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 937, in run_sync_in_worker_thread\n",
782
+ " return await future\n",
783
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 867, in run\n",
784
+ " result = context.run(func, *args)\n",
785
+ " File \"C:\\Users\\l4227\\AppData\\Local\\Temp\\ipykernel_501044\\4197914779.py\", line 7, in tts_fn\n",
786
+ " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()\n",
787
+ " File \"G:\\AI\\VITS_WebUI\\models.py\", line 500, in infer\n",
788
+ " x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)\n",
789
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
790
+ " return forward_call(*input, **kwargs)\n",
791
+ " File \"G:\\AI\\VITS_WebUI\\models.py\", line 172, in forward\n",
792
+ " x = self.encoder(x * x_mask, x_mask)\n",
793
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
794
+ " return forward_call(*input, **kwargs)\n",
795
+ " File \"G:\\AI\\VITS_WebUI\\attentions.py\", line 39, in forward\n",
796
+ " y = self.attn_layers[i](x, x, attn_mask)\n",
797
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
798
+ " return forward_call(*input, **kwargs)\n",
799
+ " File \"G:\\AI\\VITS_WebUI\\attentions.py\", line 143, in forward\n",
800
+ " x, self.attn = self.attention(q, k, v, mask=attn_mask)\n",
801
+ " File \"G:\\AI\\VITS_WebUI\\attentions.py\", line 160, in attention\n",
802
+ " scores_local = self._relative_position_to_absolute_position(rel_logits)\n",
803
+ " File \"G:\\AI\\VITS_WebUI\\attentions.py\", line 225, in _relative_position_to_absolute_position\n",
804
+ " x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))\n",
805
+ "torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 3.46 GiB (GPU 0; 12.00 GiB total capacity; 9.99 GiB already allocated; 0 bytes free; 10.09 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
806
+ ]
807
+ },
808
+ {
809
+ "name": "stdout",
810
+ "output_type": "stream",
811
+ "text": [
812
+ "DEBUG:httpx._client:HTTP Request: POST http://127.0.0.1:7860/api/predict \"HTTP/1.1 500 Internal Server Error\"\n",
813
+ "DEBUG:httpx._client:HTTP Request: POST http://127.0.0.1:7860/reset \"HTTP/1.1 200 OK\"\n"
814
+ ]
815
+ },
816
+ {
817
+ "name": "stderr",
818
+ "output_type": "stream",
819
+ "text": [
820
+ "Traceback (most recent call last):\n",
821
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\routes.py\", line 394, in run_predict\n",
822
+ " output = await app.get_blocks().process_api(\n",
823
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\blocks.py\", line 1075, in process_api\n",
824
+ " result = await self.call_function(\n",
825
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\blocks.py\", line 884, in call_function\n",
826
+ " prediction = await anyio.to_thread.run_sync(\n",
827
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\to_thread.py\", line 31, in run_sync\n",
828
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
829
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 937, in run_sync_in_worker_thread\n",
830
+ " return await future\n",
831
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 867, in run\n",
832
+ " result = context.run(func, *args)\n",
833
+ " File \"C:\\Users\\l4227\\AppData\\Local\\Temp\\ipykernel_501044\\4197914779.py\", line 7, in tts_fn\n",
834
+ " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()\n",
835
+ " File \"G:\\AI\\VITS_WebUI\\models.py\", line 500, in infer\n",
836
+ " x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)\n",
837
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
838
+ " return forward_call(*input, **kwargs)\n",
839
+ " File \"G:\\AI\\VITS_WebUI\\models.py\", line 172, in forward\n",
840
+ " x = self.encoder(x * x_mask, x_mask)\n",
841
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
842
+ " return forward_call(*input, **kwargs)\n",
843
+ " File \"G:\\AI\\VITS_WebUI\\attentions.py\", line 39, in forward\n",
844
+ " y = self.attn_layers[i](x, x, attn_mask)\n",
845
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
846
+ " return forward_call(*input, **kwargs)\n",
847
+ " File \"G:\\AI\\VITS_WebUI\\attentions.py\", line 143, in forward\n",
848
+ " x, self.attn = self.attention(q, k, v, mask=attn_mask)\n",
849
+ " File \"G:\\AI\\VITS_WebUI\\attentions.py\", line 160, in attention\n",
850
+ " scores_local = self._relative_position_to_absolute_position(rel_logits)\n",
851
+ " File \"G:\\AI\\VITS_WebUI\\attentions.py\", line 221, in _relative_position_to_absolute_position\n",
852
+ " x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))\n",
853
+ "torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 572.00 MiB (GPU 0; 12.00 GiB total capacity; 11.00 GiB already allocated; 0 bytes free; 11.06 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
854
+ ]
855
+ },
856
+ {
857
+ "name": "stdout",
858
+ "output_type": "stream",
859
+ "text": [
860
+ "DEBUG:httpx._client:HTTP Request: POST http://127.0.0.1:7860/api/predict \"HTTP/1.1 200 OK\"\n",
861
+ "DEBUG:httpx._client:HTTP Request: POST http://127.0.0.1:7860/reset \"HTTP/1.1 200 OK\"\n",
862
+ "Keyboard interruption in main thread... closing server.\n"
863
+ ]
864
+ },
865
+ {
866
+ "data": {
867
+ "text/plain": ""
868
+ },
869
+ "execution_count": 27,
870
+ "metadata": {},
871
+ "output_type": "execute_result"
872
+ }
873
+ ],
874
+ "source": [
875
+ "get_options()\n",
876
+ "\n",
877
+ "theme = gr.themes.Base()\n",
878
+ "\n",
879
+ "with gr.Blocks(theme=theme) as interface:\n",
880
+ " with gr.Tab(\"Text to Speech\"):\n",
881
+ " with gr.Column():\n",
882
+ " cover_markdown = gr.Markdown(\n",
883
+ " '<div align=\"center\">'\n",
884
+ " f'<img style=\"width:auto;height:512px;\" src=\"file/{COVER}\">' if COVER else \"\"\n",
885
+ " '</div>')\n",
886
+ " title_markdown = gr.Markdown(\n",
887
+ " '<div align=\"center\">'\n",
888
+ " f'<h3><a><strong>{\"语音名称: \"}{MODEL_ZH_NAME}</strong></a>'\n",
889
+ " f'<h3><strong>{\"checkpoint: \"}{speaker_choice}</strong>'\n",
890
+ " '</div>')\n",
891
+ "\n",
892
+ " with gr.Row():\n",
893
+ " with gr.Column(scale = 4):\n",
894
+ " input_text = gr.Textbox(\n",
895
+ " label=\"Input\",\n",
896
+ " lines=2,\n",
897
+ " placeholder=\"Enter the text you want to process here\",\n",
898
+ " elem_id=f\"input-text-en-{name_en.replace(' ','')}\",\n",
899
+ " scale = 2\n",
900
+ " )\n",
901
+ " with gr.Column(scale = 1):\n",
902
+ " gen_button = gr.Button(\"Generate\", variant=\"primary\")\n",
903
+ " clear_input_button = gr.Button(\"Clear\")\n",
904
+ "\n",
905
+ " with gr.Row():\n",
906
+ " with gr.Column(scale = 2):\n",
907
+ " lan = gr.Radio(label=\"Language\", choices=LANGUAGES, value=\"JP\")\n",
908
+ " noise_scale = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label = \"Noise Scale (情感变化程度)\", value = 0.6)\n",
909
+ " noise_scale_w = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label = \"Noise Scale w (发音长度)\", value = 0.668)\n",
910
+ " length_scale = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, label = \"Length Scale (语速)\", value=1.0)\n",
911
+ "\n",
912
+ " with gr.Column(scale = 1):\n",
913
+ " example_text_box = gr.Textbox(label=\"Example:\",\n",
914
+ " value=EXAMPLE_TEXT)\n",
915
+ "\n",
916
+ " output_audio = gr.Audio(label=\"Output\", elem_id=f\"tts-audio-en-{name_en.replace(' ','')}\")\n",
917
+ " download_button = gr.Button(\"Download\")\n",
918
+ "\n",
919
+ " # example = gr.Examples(\n",
920
+ " # examples = [EXAMPLE_TEXT],\n",
921
+ " # inputs=input_text,\n",
922
+ " # outputs = output_audio,\n",
923
+ " # fn=example_tts_fn,\n",
924
+ " # cache_examples=True\n",
925
+ " # )\n",
926
+ "\n",
927
+ "\n",
928
+ " gen_button.click(\n",
929
+ " tts_fn,\n",
930
+ " inputs = [input_text, noise_scale, noise_scale_w, length_scale],\n",
931
+ " outputs = output_audio)\n",
932
+ " clear_input_button.click(\n",
933
+ " clear_input_text,\n",
934
+ " outputs = input_text\n",
935
+ " )\n",
936
+ " download_button.click(None, [], [], _js=download_audio_js.format(audio_id=f\"en-{name_en.replace(' ', '')}\"))\n",
937
+ "\n",
938
+ "\n",
939
+ "\n",
940
+ "#------------------------------------------------------------------------------------------------------------------------\n",
941
+ " with gr.Tab(\"AI Singer\"):\n",
942
+ " input_text_gpt = gr.Textbox()\n",
943
+ "\n",
944
+ "\n",
945
+ "#------------------------------------------------------------------------------------------------------------------------\n",
946
+ " with gr.Tab(\"TTS with ChatGPT\"):\n",
947
+ " with gr.Row():\n",
948
+ " with gr.Column(scale=7):\n",
949
+ " api_key = gr.Textbox(\n",
950
+ " label = \"API Key\",\n",
951
+ " type=\"password\")\n",
952
+ " api_key.change(fn=load_api_key,inputs=api_key)\n",
953
+ " with gr.Column(scale=1):\n",
954
+ " lan_ChatGPT = gr.Radio(label=\"Language\", choices=LANGUAGES, value=\"JP\")\n",
955
+ "\n",
956
+ " with gr.Row():\n",
957
+ " with gr.Column(scale=1):\n",
958
+ " user_input = gr.Textbox(\n",
959
+ " show_label=False,\n",
960
+ " placeholder=\"Enter text and press enter\")\n",
961
+ "\n",
962
+ " with gr.Row():\n",
963
+ " submit_button = gr.Button(\"Submit\", variant=\"primary\")\n",
964
+ " submit_clear_button = gr.Button(\"Clear\")\n",
965
+ "\n",
966
+ " cover_markdown_ChatGPT = gr.Markdown(\n",
967
+ " '<div align=\"center\">'\n",
968
+ " f'<img style=\"width:auto;height:512px;\" src=\"file/{COVER}\">' if COVER else \"\"\n",
969
+ " '</div>')\n",
970
+ " title_markdown_ChatGPT = gr.Markdown(\n",
971
+ " '<div align=\"center\">'\n",
972
+ " f'<h3><a><strong>{\"语音名称: \"}{MODEL_ZH_NAME}</strong></a>'\n",
973
+ " f'<h3><strong>{\"checkpoint: \"}{speaker_choice}</strong>'\n",
974
+ " '</div>')\n",
975
+ " with gr.Column(scale=2):\n",
976
+ " chatbot = gr.Chatbot([], elem_id=\"chatbot\").style(height=750)\n",
977
+ "\n",
978
+ "\n",
979
+ "\n",
980
+ " user_input.change(fn=usr_input_update, inputs=user_input)\n",
981
+ "\n",
982
+ " user_input.submit(add_text, [chatbot ,user_input], [chatbot ,user_input], queue=False).then(bot, chatbot, chatbot)\n",
983
+ "\n",
984
+ " submit_button.click(\n",
985
+ " fn=add_text,\n",
986
+ " inputs=[chatbot ,user_input],\n",
987
+ " outputs=[chatbot ,user_input],\n",
988
+ " queue=False).then(ChatGPT_Bot, chatbot, chatbot)\n",
989
+ "\n",
990
+ "\n",
991
+ "\n",
992
+ "#------------------------------------------------------------------------------------------------------------------------\n",
993
+ " with gr.Tab(\"Settings\"):\n",
994
+ " with gr.Box():\n",
995
+ " gr.Markdown(\"\"\"# Select Model\"\"\")\n",
996
+ " with gr.Row():\n",
997
+ "\n",
998
+ " with gr.Column(scale = 5):\n",
999
+ " model_choice = gr.Dropdown(label = \"Model\",\n",
1000
+ " choices=[(model[\"name_en\"]) for name, model in models_info.items()],\n",
1001
+ " interactive=True,\n",
1002
+ " value=models_info['Yuuka']['name_en']\n",
1003
+ " )\n",
1004
+ " with gr.Column(scale = 5):\n",
1005
+ " speaker_id_choice = gr.Dropdown(label = \"Speaker ID\",\n",
1006
+ " choices=[(str(model[\"sid\"])) for name, model in models_info.items()],\n",
1007
+ " interactive=True,\n",
1008
+ " value=str(models_info['Yuuka']['sid'])\n",
1009
+ " )\n",
1010
+ "\n",
1011
+ " with gr.Column(scale = 1):\n",
1012
+ " refresh_button = gr.Button(\"Refresh\", variant=\"primary\")\n",
1013
+ " reset_button = gr.Button(\"Reset\")\n",
1014
+ "\n",
1015
+ " ### 切换模型功能实现\n",
1016
+ " model_choice.change(fn=change_dropdown, inputs=model_choice, outputs=[speaker_id_choice,cover_markdown,title_markdown,lan,example_text_box,cover_markdown_ChatGPT,title_markdown_ChatGPT,lan_ChatGPT])\n",
1017
+ "\n",
1018
+ " refresh_button.click(fn=refresh_options, outputs = [model_choice,speaker_id_choice])\n",
1019
+ " reset_button.click(reset_options, outputs = [model_choice,speaker_id_choice])\n",
1020
+ "\n",
1021
+ "\n",
1022
+ " with gr.Box():\n",
1023
+ " gr.Markdown(\"# Add Model\\n\"\n",
1024
+ " \"> *为必填选项\\n\"\n",
1025
+ " \"> 添加完成后将**checkpoints**文件放到对应生成的文件夹中\"\n",
1026
+ " )\n",
1027
+ "\n",
1028
+ "\n",
1029
+ " with gr.Row():\n",
1030
+ " # file = gr.Files(label = \"VITS Model*\", file_types=[\".pth\"])\n",
1031
+ " example_text = gr.Textbox(label = \"Example Text\",\n",
1032
+ " lines=16,\n",
1033
+ " placeholder=\"Enter the example text here\",)\n",
1034
+ " model_cover = gr.Image(label = \"Cover\")\n",
1035
+ "\n",
1036
+ " with gr.Column():\n",
1037
+ " model_speaker_id = gr.Textbox(label = \"Speaker List*\",\n",
1038
+ " placeholder=\"Single speaker model default=0\")\n",
1039
+ " model_name_en = gr.Textbox(label = \"name_en*\")\n",
1040
+ " model_name_cn = gr.Textbox(label = \"name_cn\")\n",
1041
+ " model_language = gr.Dropdown(label = \"Language*\",\n",
1042
+ " choices=LANGUAGES,\n",
1043
+ " interactive=True)\n",
1044
+ " with gr.Row():\n",
1045
+ " add_model_button = gr.Button(\"Add Model\", variant=\"primary\")\n",
1046
+ " clear_add_model_button = gr.Button(\"Clear\")\n",
1047
+ " with gr.Box():\n",
1048
+ " with gr.Row():\n",
1049
+ " message_box = gr.Textbox(label = \"Message\")\n",
1050
+ "\n",
1051
+ "\n",
1052
+ "\n",
1053
+ " add_model_button.click(add_model_fn,\n",
1054
+ " inputs = [example_text, model_cover, model_speaker_id, model_name_en, model_name_cn, model_language],\n",
1055
+ " outputs = message_box\n",
1056
+ " )\n",
1057
+ " clear_add_model_button.click(clear_add_model_info,\n",
1058
+ " outputs = [example_text, model_cover, model_speaker_id, model_name_en, model_name_cn, model_language]\n",
1059
+ " )\n",
1060
+ "\n",
1061
+ "\n",
1062
+ "\n",
1063
+ "\n",
1064
+ "\n",
1065
+ "\n",
1066
+ "interface.queue(concurrency_count=1).launch(debug=True)\n",
1067
+ "\n"
1068
+ ],
1069
+ "metadata": {
1070
+ "collapsed": false
1071
+ }
1072
+ },
1073
+ {
1074
+ "cell_type": "code",
1075
+ "execution_count": null,
1076
+ "outputs": [],
1077
+ "source": [],
1078
+ "metadata": {
1079
+ "collapsed": false,
1080
+ "pycharm": {
1081
+ "is_executing": true
1082
+ }
1083
+ }
1084
+ },
1085
+ {
1086
+ "cell_type": "code",
1087
+ "execution_count": null,
1088
+ "outputs": [],
1089
+ "source": [],
1090
+ "metadata": {
1091
+ "collapsed": false
1092
+ }
1093
+ },
1094
+ {
1095
+ "cell_type": "code",
1096
+ "execution_count": null,
1097
+ "outputs": [],
1098
+ "source": [],
1099
+ "metadata": {
1100
+ "collapsed": false
1101
+ }
1102
+ }
1103
+ ],
1104
+ "metadata": {
1105
+ "colab": {
1106
+ "authorship_tag": "ABX9TyOanTxjuTkrY9G5Z/F1JKYD",
1107
+ "collapsed_sections": [
1108
+ "1cRKuRl7Z8Nj",
1109
+ "uYQ2esCNI4IT",
1110
+ "YvWwpaTKI5Ut",
1111
+ "1rerX8gxPmLf",
1112
+ "vs-wM321Zk0u",
1113
+ "SxpEIauJZ0s6"
1114
+ ],
1115
+ "provenance": []
1116
+ },
1117
+ "gpuClass": "standard",
1118
+ "kernelspec": {
1119
+ "display_name": "Python 3 (ipykernel)",
1120
+ "language": "python",
1121
+ "name": "python3"
1122
+ },
1123
+ "language_info": {
1124
+ "codemirror_mode": {
1125
+ "name": "ipython",
1126
+ "version": 3
1127
+ },
1128
+ "file_extension": ".py",
1129
+ "mimetype": "text/x-python",
1130
+ "name": "python",
1131
+ "nbconvert_exporter": "python",
1132
+ "pygments_lexer": "ipython3",
1133
+ "version": "3.9.12"
1134
+ }
1135
+ },
1136
+ "nbformat": 4,
1137
+ "nbformat_minor": 1
1138
+ }
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jaehyeon Kim
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
SoftVC.ipynb ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 18,
6
+ "metadata": {
7
+ "collapsed": true
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "import gradio as gr\n",
12
+ "import os\n",
13
+ "\n",
14
+ "import logging\n",
15
+ "\n",
16
+ "import librosa\n",
17
+ "import torch\n",
18
+ "\n",
19
+ "import commons\n",
20
+ "import utils\n",
21
+ "from models import SynthesizerTrn\n",
22
+ "from text.symbols import symbols\n",
23
+ "from text import text_to_sequence\n",
24
+ "import numpy as np"
25
+ ]
26
+ },
27
+ {
28
+ "cell_type": "code",
29
+ "execution_count": 2,
30
+ "outputs": [
31
+ {
32
+ "name": "stdout",
33
+ "output_type": "stream",
34
+ "text": [
35
+ "G:\\AI\\so-vits-svc_v2\\VITS_WebUI\\monotonic_align\n",
36
+ "G:\\AI\\so-vits-svc_v2\\VITS_WebUI\n"
37
+ ]
38
+ }
39
+ ],
40
+ "source": [
41
+ "%cd G:\\AI\\so-vits-svc_v2\\VITS_WebUI\\monotonic_align\n",
42
+ "!python setup.py build_ext --inplace\n",
43
+ "%cd .."
44
+ ],
45
+ "metadata": {
46
+ "collapsed": false
47
+ }
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": 4,
52
+ "outputs": [],
53
+ "source": [
54
+ "def resize2d(source, target_len):\n",
55
+ " source[source<0.001] = np.nan\n",
56
+ " target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)\n",
57
+ " return np.nan_to_num(target)\n",
58
+ "def convert_wav_22050_to_f0(audio):\n",
59
+ " tmp = librosa.pyin(audio,\n",
60
+ " fmin=librosa.note_to_hz('C0'),\n",
61
+ " fmax=librosa.note_to_hz('C7'),\n",
62
+ " frame_length=1780)[0]\n",
63
+ " f0 = np.zeros_like(tmp)\n",
64
+ " f0[tmp>0] = tmp[tmp>0]\n",
65
+ " return f0"
66
+ ],
67
+ "metadata": {
68
+ "collapsed": false
69
+ }
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": 5,
74
+ "outputs": [],
75
+ "source": [
76
+ "def get_text(text, hps):\n",
77
+ " text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
78
+ " if hps.data.add_blank:\n",
79
+ " text_norm = commons.intersperse(text_norm, 0)\n",
80
+ " text_norm = torch.LongTensor(text_norm)\n",
81
+ " print(text_norm.shape)\n",
82
+ " return text_norm"
83
+ ],
84
+ "metadata": {
85
+ "collapsed": false
86
+ }
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": 10,
91
+ "outputs": [],
92
+ "source": [
93
+ "CONFIG_PATH = \"configs/config.json\"\n",
94
+ "MODEL_PATH = \"models/Yuuka/Yuuka.pth\"\n",
95
+ "\n",
96
+ "hps = utils.get_hparams_from_file(CONFIG_PATH)\n",
97
+ "net_g_ms = SynthesizerTrn(\n",
98
+ " len(hps.symbols),\n",
99
+ " hps.data.filter_length // 2 + 1,\n",
100
+ " hps.train.segment_size // hps.data.hop_length,\n",
101
+ " n_speakers=hps.data.n_speakers,\n",
102
+ " **hps.model).cuda()\n",
103
+ "\n"
104
+ ],
105
+ "metadata": {
106
+ "collapsed": false
107
+ }
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": 8,
112
+ "outputs": [
113
+ {
114
+ "name": "stdout",
115
+ "output_type": "stream",
116
+ "text": [
117
+ "INFO:root:Loaded checkpoint 'models/Yuuka/Yuuka.pth' (iteration 445)\n"
118
+ ]
119
+ }
120
+ ],
121
+ "source": [
122
+ "_ = utils.load_checkpoint(MODEL_PATH, net_g_ms, None)"
123
+ ],
124
+ "metadata": {
125
+ "collapsed": false
126
+ }
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": 11,
131
+ "outputs": [
132
+ {
133
+ "name": "stderr",
134
+ "output_type": "stream",
135
+ "text": [
136
+ "Using cache found in C:\\Users\\l4227/.cache\\torch\\hub\\bshall_hubert_main\n"
137
+ ]
138
+ }
139
+ ],
140
+ "source": [
141
+ "hubert = torch.hub.load(\"bshall/hubert:main\", \"hubert_soft\")"
142
+ ],
143
+ "metadata": {
144
+ "collapsed": false
145
+ }
146
+ },
147
+ {
148
+ "cell_type": "code",
149
+ "execution_count": 12,
150
+ "outputs": [],
151
+ "source": [
152
+ "def vc_fn(input_audio,vc_transform):\n",
153
+ " if input_audio is None:\n",
154
+ " return \"You need to upload an audio\", None\n",
155
+ " sampling_rate, audio = input_audio\n",
156
+ " # print(audio.shape,sampling_rate)\n",
157
+ " duration = audio.shape[0] / sampling_rate\n",
158
+ " if duration > 30:\n",
159
+ " return \"Error: Audio is too long\", None\n",
160
+ " audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)\n",
161
+ " if len(audio.shape) > 1:\n",
162
+ " audio = librosa.to_mono(audio.transpose(1, 0))\n",
163
+ " if sampling_rate != 16000:\n",
164
+ " audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)\n",
165
+ "\n",
166
+ " audio22050 = librosa.resample(audio, orig_sr=16000, target_sr=22050)\n",
167
+ " f0 = convert_wav_22050_to_f0(audio22050)\n",
168
+ "\n",
169
+ " source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)\n",
170
+ " print(source.shape)\n",
171
+ " with torch.inference_mode():\n",
172
+ " units = hubert.units(source)\n",
173
+ " soft = units.squeeze(0).numpy()\n",
174
+ " print(sampling_rate)\n",
175
+ " f0 = resize2d(f0, len(soft[:, 0])) * vc_transform\n",
176
+ " soft[:, 0] = f0 / 10\n",
177
+ " sid = torch.LongTensor([0])\n",
178
+ " stn_tst = torch.FloatTensor(soft)\n",
179
+ " with torch.no_grad():\n",
180
+ " x_tst = stn_tst.unsqueeze(0)\n",
181
+ " x_tst_lengths = torch.LongTensor([stn_tst.size(0)])\n",
182
+ " audio = net_g_ms.infer(x_tst, x_tst_lengths,sid=sid, noise_scale=0.1, noise_scale_w=0.1, length_scale=1)[0][\n",
183
+ " 0, 0].data.float().numpy()\n",
184
+ "\n",
185
+ " return \"Success\", (hps.data.sampling_rate, audio)"
186
+ ],
187
+ "metadata": {
188
+ "collapsed": false
189
+ }
190
+ },
191
+ {
192
+ "cell_type": "code",
193
+ "execution_count": 19,
194
+ "outputs": [
195
+ {
196
+ "name": "stdout",
197
+ "output_type": "stream",
198
+ "text": [
199
+ "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
200
+ "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): huggingface.co:443\n",
201
+ "DEBUG:asyncio:Using selector: SelectSelector\n",
202
+ "DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 127.0.0.1:7890\n",
203
+ "DEBUG:urllib3.connectionpool:http://127.0.0.1:7890 \"GET http://127.0.0.1:7861/startup-events HTTP/1.1\" 200 5\n",
204
+ "DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 127.0.0.1:7890\n",
205
+ "DEBUG:urllib3.connectionpool:http://127.0.0.1:7890 \"HEAD http://127.0.0.1:7861/ HTTP/1.1\" 200 0\n",
206
+ "Running on local URL: http://127.0.0.1:7861\n",
207
+ "\n",
208
+ "To create a public link, set `share=True` in `launch()`.\n"
209
+ ]
210
+ },
211
+ {
212
+ "data": {
213
+ "text/plain": "<IPython.core.display.HTML object>",
214
+ "text/html": "<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
215
+ },
216
+ "metadata": {},
217
+ "output_type": "display_data"
218
+ },
219
+ {
220
+ "name": "stdout",
221
+ "output_type": "stream",
222
+ "text": [
223
+ "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
224
+ "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): huggingface.co:443\n"
225
+ ]
226
+ },
227
+ {
228
+ "name": "stderr",
229
+ "output_type": "stream",
230
+ "text": [
231
+ "Traceback (most recent call last):\n",
232
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\soundfile.py\", line 161, in <module>\n",
233
+ " import _soundfile_data # ImportError if this doesn't exist\n",
234
+ "ModuleNotFoundError: No module named '_soundfile_data'\n",
235
+ "\n",
236
+ "During handling of the above exception, another exception occurred:\n",
237
+ "\n",
238
+ "Traceback (most recent call last):\n",
239
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\soundfile.py\", line 171, in <module>\n",
240
+ " _snd = _ffi.dlopen(_libname)\n",
241
+ "OSError: cannot load library 'D:\\Anaconda\\envs\\ML\\Library\\bin\\sndfile.dll': error 0x7e\n",
242
+ "\n",
243
+ "During handling of the above exception, another exception occurred:\n",
244
+ "\n",
245
+ "Traceback (most recent call last):\n",
246
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\routes.py\", line 394, in run_predict\n",
247
+ " output = await app.get_blocks().process_api(\n",
248
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\blocks.py\", line 1075, in process_api\n",
249
+ " result = await self.call_function(\n",
250
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\gradio\\blocks.py\", line 884, in call_function\n",
251
+ " prediction = await anyio.to_thread.run_sync(\n",
252
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\to_thread.py\", line 28, in run_sync\n",
253
+ " return await get_asynclib().run_sync_in_worker_thread(func, *args, cancellable=cancellable,\n",
254
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 818, in run_sync_in_worker_thread\n",
255
+ " return await future\n",
256
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 754, in run\n",
257
+ " result = context.run(func, *args)\n",
258
+ " File \"C:\\Users\\l4227\\AppData\\Local\\Temp\\ipykernel_23416\\731703501.py\", line 13, in vc_fn\n",
259
+ " audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)\n",
260
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\lazy_loader\\__init__.py\", line 77, in __getattr__\n",
261
+ " attr = getattr(submod, name)\n",
262
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\lazy_loader\\__init__.py\", line 76, in __getattr__\n",
263
+ " submod = importlib.import_module(submod_path)\n",
264
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\importlib\\__init__.py\", line 127, in import_module\n",
265
+ " return _bootstrap._gcd_import(name[level:], package, level)\n",
266
+ " File \"<frozen importlib._bootstrap>\", line 1030, in _gcd_import\n",
267
+ " File \"<frozen importlib._bootstrap>\", line 1007, in _find_and_load\n",
268
+ " File \"<frozen importlib._bootstrap>\", line 986, in _find_and_load_unlocked\n",
269
+ " File \"<frozen importlib._bootstrap>\", line 680, in _load_unlocked\n",
270
+ " File \"<frozen importlib._bootstrap_external>\", line 850, in exec_module\n",
271
+ " File \"<frozen importlib._bootstrap>\", line 228, in _call_with_frames_removed\n",
272
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\librosa\\core\\audio.py\", line 10, in <module>\n",
273
+ " import soundfile as sf\n",
274
+ " File \"D:\\Anaconda\\envs\\ML\\lib\\site-packages\\soundfile.py\", line 192, in <module>\n",
275
+ " _snd = _ffi.dlopen(_explicit_libname)\n",
276
+ "OSError: cannot load library 'libsndfile.dll': error 0x7e\n"
277
+ ]
278
+ },
279
+ {
280
+ "name": "stdout",
281
+ "output_type": "stream",
282
+ "text": [
283
+ "Keyboard interruption in main thread... closing server.\n"
284
+ ]
285
+ }
286
+ ],
287
+ "source": [
288
+ "app = gr.Blocks()\n",
289
+ "with app:\n",
290
+ " with gr.Tabs():\n",
291
+ " with gr.TabItem(\"Basic\"):\n",
292
+ " vc_input3 = gr.Audio(label=\"Input Audio (30s limitation)\")\n",
293
+ " vc_transform = gr.Number(label=\"transform\",value=1.0)\n",
294
+ " vc_submit = gr.Button(\"Convert\", variant=\"primary\")\n",
295
+ " vc_output1 = gr.Textbox(label=\"Output Message\")\n",
296
+ " vc_output2 = gr.Audio(label=\"Output Audio\")\n",
297
+ " vc_submit.click(vc_fn, [ vc_input3,vc_transform], [vc_output1, vc_output2])\n",
298
+ "\n",
299
+ " app.launch(debug=True)"
300
+ ],
301
+ "metadata": {
302
+ "collapsed": false
303
+ }
304
+ },
305
+ {
306
+ "cell_type": "code",
307
+ "execution_count": null,
308
+ "outputs": [],
309
+ "source": [],
310
+ "metadata": {
311
+ "collapsed": false
312
+ }
313
+ },
314
+ {
315
+ "cell_type": "code",
316
+ "execution_count": null,
317
+ "outputs": [],
318
+ "source": [],
319
+ "metadata": {
320
+ "collapsed": false
321
+ }
322
+ }
323
+ ],
324
+ "metadata": {
325
+ "kernelspec": {
326
+ "display_name": "Python 3",
327
+ "language": "python",
328
+ "name": "python3"
329
+ },
330
+ "language_info": {
331
+ "codemirror_mode": {
332
+ "name": "ipython",
333
+ "version": 2
334
+ },
335
+ "file_extension": ".py",
336
+ "mimetype": "text/x-python",
337
+ "name": "python",
338
+ "nbconvert_exporter": "python",
339
+ "pygments_lexer": "ipython2",
340
+ "version": "2.7.6"
341
+ }
342
+ },
343
+ "nbformat": 4,
344
+ "nbformat_minor": 0
345
+ }
__pycache__/attentions.cpython-310.pyc ADDED
Binary file (9.58 kB). View file
 
__pycache__/commons.cpython-310.pyc ADDED
Binary file (5.76 kB). View file
 
__pycache__/models.cpython-310.pyc ADDED
Binary file (15.2 kB). View file
 
__pycache__/modules.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
__pycache__/transforms.cpython-310.pyc ADDED
Binary file (3.9 kB). View file
 
__pycache__/utils.cpython-310.pyc ADDED
Binary file (8.54 kB). View file
 
attentions.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import commons
9
+ import modules
10
+ from modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15
+ super().__init__()
16
+ self.hidden_channels = hidden_channels
17
+ self.filter_channels = filter_channels
18
+ self.n_heads = n_heads
19
+ self.n_layers = n_layers
20
+ self.kernel_size = kernel_size
21
+ self.p_dropout = p_dropout
22
+ self.window_size = window_size
23
+
24
+ self.drop = nn.Dropout(p_dropout)
25
+ self.attn_layers = nn.ModuleList()
26
+ self.norm_layers_1 = nn.ModuleList()
27
+ self.ffn_layers = nn.ModuleList()
28
+ self.norm_layers_2 = nn.ModuleList()
29
+ for i in range(self.n_layers):
30
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
32
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
34
+
35
+ def forward(self, x, x_mask):
36
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37
+ x = x * x_mask
38
+ for i in range(self.n_layers):
39
+ y = self.attn_layers[i](x, x, attn_mask)
40
+ y = self.drop(y)
41
+ x = self.norm_layers_1[i](x + y)
42
+
43
+ y = self.ffn_layers[i](x, x_mask)
44
+ y = self.drop(y)
45
+ x = self.norm_layers_2[i](x + y)
46
+ x = x * x_mask
47
+ return x
48
+
49
+
50
+ class Decoder(nn.Module):
51
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52
+ super().__init__()
53
+ self.hidden_channels = hidden_channels
54
+ self.filter_channels = filter_channels
55
+ self.n_heads = n_heads
56
+ self.n_layers = n_layers
57
+ self.kernel_size = kernel_size
58
+ self.p_dropout = p_dropout
59
+ self.proximal_bias = proximal_bias
60
+ self.proximal_init = proximal_init
61
+
62
+ self.drop = nn.Dropout(p_dropout)
63
+ self.self_attn_layers = nn.ModuleList()
64
+ self.norm_layers_0 = nn.ModuleList()
65
+ self.encdec_attn_layers = nn.ModuleList()
66
+ self.norm_layers_1 = nn.ModuleList()
67
+ self.ffn_layers = nn.ModuleList()
68
+ self.norm_layers_2 = nn.ModuleList()
69
+ for i in range(self.n_layers):
70
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
72
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
74
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
76
+
77
+ def forward(self, x, x_mask, h, h_mask):
78
+ """
79
+ x: decoder input
80
+ h: encoder output
81
+ """
82
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84
+ x = x * x_mask
85
+ for i in range(self.n_layers):
86
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
87
+ y = self.drop(y)
88
+ x = self.norm_layers_0[i](x + y)
89
+
90
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91
+ y = self.drop(y)
92
+ x = self.norm_layers_1[i](x + y)
93
+
94
+ y = self.ffn_layers[i](x, x_mask)
95
+ y = self.drop(y)
96
+ x = self.norm_layers_2[i](x + y)
97
+ x = x * x_mask
98
+ return x
99
+
100
+
101
+ class MultiHeadAttention(nn.Module):
102
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103
+ super().__init__()
104
+ assert channels % n_heads == 0
105
+
106
+ self.channels = channels
107
+ self.out_channels = out_channels
108
+ self.n_heads = n_heads
109
+ self.p_dropout = p_dropout
110
+ self.window_size = window_size
111
+ self.heads_share = heads_share
112
+ self.block_length = block_length
113
+ self.proximal_bias = proximal_bias
114
+ self.proximal_init = proximal_init
115
+ self.attn = None
116
+
117
+ self.k_channels = channels // n_heads
118
+ self.conv_q = nn.Conv1d(channels, channels, 1)
119
+ self.conv_k = nn.Conv1d(channels, channels, 1)
120
+ self.conv_v = nn.Conv1d(channels, channels, 1)
121
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
122
+ self.drop = nn.Dropout(p_dropout)
123
+
124
+ if window_size is not None:
125
+ n_heads_rel = 1 if heads_share else n_heads
126
+ rel_stddev = self.k_channels**-0.5
127
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129
+
130
+ nn.init.xavier_uniform_(self.conv_q.weight)
131
+ nn.init.xavier_uniform_(self.conv_k.weight)
132
+ nn.init.xavier_uniform_(self.conv_v.weight)
133
+ if proximal_init:
134
+ with torch.no_grad():
135
+ self.conv_k.weight.copy_(self.conv_q.weight)
136
+ self.conv_k.bias.copy_(self.conv_q.bias)
137
+
138
+ def forward(self, x, c, attn_mask=None):
139
+ q = self.conv_q(x)
140
+ k = self.conv_k(c)
141
+ v = self.conv_v(c)
142
+
143
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
144
+
145
+ x = self.conv_o(x)
146
+ return x
147
+
148
+ def attention(self, query, key, value, mask=None):
149
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
150
+ b, d, t_s, t_t = (*key.size(), query.size(2))
151
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154
+
155
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156
+ if self.window_size is not None:
157
+ assert t_s == t_t, "Relative attention is only available for self-attention."
158
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
161
+ scores = scores + scores_local
162
+ if self.proximal_bias:
163
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
164
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165
+ if mask is not None:
166
+ scores = scores.masked_fill(mask == 0, -1e4)
167
+ if self.block_length is not None:
168
+ assert t_s == t_t, "Local attention is only available for self-attention."
169
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170
+ scores = scores.masked_fill(block_mask == 0, -1e4)
171
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172
+ p_attn = self.drop(p_attn)
173
+ output = torch.matmul(p_attn, value)
174
+ if self.window_size is not None:
175
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
176
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179
+ return output, p_attn
180
+
181
+ def _matmul_with_relative_values(self, x, y):
182
+ """
183
+ x: [b, h, l, m]
184
+ y: [h or 1, m, d]
185
+ ret: [b, h, l, d]
186
+ """
187
+ ret = torch.matmul(x, y.unsqueeze(0))
188
+ return ret
189
+
190
+ def _matmul_with_relative_keys(self, x, y):
191
+ """
192
+ x: [b, h, l, d]
193
+ y: [h or 1, m, d]
194
+ ret: [b, h, l, m]
195
+ """
196
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197
+ return ret
198
+
199
+ def _get_relative_embeddings(self, relative_embeddings, length):
200
+ max_relative_position = 2 * self.window_size + 1
201
+ # Pad first before slice to avoid using cond ops.
202
+ pad_length = max(length - (self.window_size + 1), 0)
203
+ slice_start_position = max((self.window_size + 1) - length, 0)
204
+ slice_end_position = slice_start_position + 2 * length - 1
205
+ if pad_length > 0:
206
+ padded_relative_embeddings = F.pad(
207
+ relative_embeddings,
208
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209
+ else:
210
+ padded_relative_embeddings = relative_embeddings
211
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212
+ return used_relative_embeddings
213
+
214
+ def _relative_position_to_absolute_position(self, x):
215
+ """
216
+ x: [b, h, l, 2*l-1]
217
+ ret: [b, h, l, l]
218
+ """
219
+ batch, heads, length, _ = x.size()
220
+ # Concat columns of pad to shift from relative to absolute indexing.
221
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222
+
223
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
224
+ x_flat = x.view([batch, heads, length * 2 * length])
225
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226
+
227
+ # Reshape and slice out the padded elements.
228
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229
+ return x_final
230
+
231
+ def _absolute_position_to_relative_position(self, x):
232
+ """
233
+ x: [b, h, l, l]
234
+ ret: [b, h, l, 2*l-1]
235
+ """
236
+ batch, heads, length, _ = x.size()
237
+ # padd along column
238
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240
+ # add 0's in the beginning that will skew the elements after reshape
241
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243
+ return x_final
244
+
245
+ def _attention_bias_proximal(self, length):
246
+ """Bias for self-attention to encourage attention to close positions.
247
+ Args:
248
+ length: an integer scalar.
249
+ Returns:
250
+ a Tensor with shape [1, 1, length, length]
251
+ """
252
+ r = torch.arange(length, dtype=torch.float32)
253
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255
+
256
+
257
+ class FFN(nn.Module):
258
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259
+ super().__init__()
260
+ self.in_channels = in_channels
261
+ self.out_channels = out_channels
262
+ self.filter_channels = filter_channels
263
+ self.kernel_size = kernel_size
264
+ self.p_dropout = p_dropout
265
+ self.activation = activation
266
+ self.causal = causal
267
+
268
+ if causal:
269
+ self.padding = self._causal_padding
270
+ else:
271
+ self.padding = self._same_padding
272
+
273
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275
+ self.drop = nn.Dropout(p_dropout)
276
+
277
+ def forward(self, x, x_mask):
278
+ x = self.conv_1(self.padding(x * x_mask))
279
+ if self.activation == "gelu":
280
+ x = x * torch.sigmoid(1.702 * x)
281
+ else:
282
+ x = torch.relu(x)
283
+ x = self.drop(x)
284
+ x = self.conv_2(self.padding(x * x_mask))
285
+ return x * x_mask
286
+
287
+ def _causal_padding(self, x):
288
+ if self.kernel_size == 1:
289
+ return x
290
+ pad_l = self.kernel_size - 1
291
+ pad_r = 0
292
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293
+ x = F.pad(x, commons.convert_pad_shape(padding))
294
+ return x
295
+
296
+ def _same_padding(self, x):
297
+ if self.kernel_size == 1:
298
+ return x
299
+ pad_l = (self.kernel_size - 1) // 2
300
+ pad_r = self.kernel_size // 2
301
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302
+ x = F.pad(x, commons.convert_pad_shape(padding))
303
+ return x
commons.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
+
29
+
30
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(
68
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
69
+ position = torch.arange(length, dtype=torch.float)
70
+ num_timescales = channels // 2
71
+ log_timescale_increment = (
72
+ math.log(float(max_timescale) / float(min_timescale)) /
73
+ (num_timescales - 1))
74
+ inv_timescales = min_timescale * torch.exp(
75
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ l = pad_shape[::-1]
112
+ pad_shape = [item for sublist in l for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+ device = duration.device
134
+
135
+ b, _, t_y, t_x = mask.shape
136
+ cum_duration = torch.cumsum(duration, -1)
137
+
138
+ cum_duration_flat = cum_duration.view(b * t_x)
139
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
+ path = path.view(b, t_x, t_y)
141
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
+ path = path.unsqueeze(1).transpose(2,3) * mask
143
+ return path
144
+
145
+
146
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
147
+ if isinstance(parameters, torch.Tensor):
148
+ parameters = [parameters]
149
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
150
+ norm_type = float(norm_type)
151
+ if clip_value is not None:
152
+ clip_value = float(clip_value)
153
+
154
+ total_norm = 0
155
+ for p in parameters:
156
+ param_norm = p.grad.data.norm(norm_type)
157
+ total_norm += param_norm.item() ** norm_type
158
+ if clip_value is not None:
159
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
+ total_norm = total_norm ** (1. / norm_type)
161
+ return total_norm
configs/config-single-speaker.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-5,
8
+ "betas": [0.8, 0.99],
9
+ "eps": 1e-9,
10
+ "batch_size": 16,
11
+ "fp16_run": true,
12
+ "lr_decay": 0.999875,
13
+ "segment_size": 8192,
14
+ "init_lr_ratio": 1,
15
+ "warmup_epochs": 0,
16
+ "c_mel": 45,
17
+ "c_kl": 1.0
18
+ },
19
+ "data": {
20
+ "training_files":"filelists/takina_train.txt.cleaned",
21
+ "validation_files":"filelists/takina_val.txt.cleaned",
22
+ "text_cleaners":["japanese_cleaners"],
23
+ "max_wav_value": 32768.0,
24
+ "sampling_rate": 22050,
25
+ "filter_length": 1024,
26
+ "hop_length": 256,
27
+ "win_length": 1024,
28
+ "n_mel_channels": 80,
29
+ "mel_fmin": 0.0,
30
+ "mel_fmax": null,
31
+ "add_blank": true,
32
+ "n_speakers": 0,
33
+ "cleaned_text": true
34
+ },
35
+ "model": {
36
+ "inter_channels": 192,
37
+ "hidden_channels": 192,
38
+ "filter_channels": 768,
39
+ "n_heads": 2,
40
+ "n_layers": 6,
41
+ "kernel_size": 3,
42
+ "p_dropout": 0.1,
43
+ "resblock": "1",
44
+ "resblock_kernel_sizes": [3,7,11],
45
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46
+ "upsample_rates": [8,8,2,2],
47
+ "upsample_initial_channel": 512,
48
+ "upsample_kernel_sizes": [16,16,4,4],
49
+ "n_layers_q": 3,
50
+ "use_spectral_norm": false
51
+ },
52
+ "speakers": ["takina"],
53
+ "symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
54
+ }
configs/config.json ADDED
@@ -0,0 +1,948 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0002,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 16,
14
+ "fp16_run": true,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 8192,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0
21
+ },
22
+ "data": {
23
+ "training_files": "filelists/yuuka_train.txt.cleaned",
24
+ "validation_files": "filelists/yuuka_val.txt.cleaned",
25
+ "text_cleaners": [
26
+ "japanese_cleaners"
27
+ ],
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 22050,
30
+ "filter_length": 1024,
31
+ "hop_length": 256,
32
+ "win_length": 1024,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null,
36
+ "add_blank": true,
37
+ "n_speakers": 804,
38
+ "cleaned_text": true
39
+ },
40
+ "model": {
41
+ "inter_channels": 192,
42
+ "hidden_channels": 192,
43
+ "filter_channels": 768,
44
+ "n_heads": 2,
45
+ "n_layers": 6,
46
+ "kernel_size": 3,
47
+ "p_dropout": 0.1,
48
+ "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256
87
+ },
88
+ "speakers": [
89
+ "\u7279\u522b\u5468",
90
+ "\u65e0\u58f0\u94c3\u9e7f",
91
+ "\u4e1c\u6d77\u5e1d\u7687\uff08\u5e1d\u5b9d\uff0c\u5e1d\u738b\uff09",
92
+ "\u4e38\u5584\u65af\u57fa",
93
+ "\u5bcc\u58eb\u5947\u8ff9",
94
+ "\u5c0f\u6817\u5e3d",
95
+ "\u9ec4\u91d1\u8239",
96
+ "\u4f0f\u7279\u52a0",
97
+ "\u5927\u548c\u8d64\u9aa5",
98
+ "\u5927\u6811\u5feb\u8f66",
99
+ "\u8349\u4e0a\u98de",
100
+ "\u83f1\u4e9a\u9a6c\u900a",
101
+ "\u76ee\u767d\u9ea6\u6606",
102
+ "\u795e\u9e70",
103
+ "\u597d\u6b4c\u5267",
104
+ "\u6210\u7530\u767d\u4ec1",
105
+ "\u9c81\u9053\u592b\u8c61\u5f81\uff08\u7687\u5e1d\uff09",
106
+ "\u6c14\u69fd",
107
+ "\u7231\u4e3d\u6570\u7801",
108
+ "\u661f\u4e91\u5929\u7a7a",
109
+ "\u7389\u85fb\u5341\u5b57",
110
+ "\u7f8e\u5999\u59ff\u52bf",
111
+ "\u7435\u7436\u6668\u5149",
112
+ "\u6469\u8036\u91cd\u70ae",
113
+ "\u66fc\u57ce\u8336\u5ea7",
114
+ "\u7f8e\u6d66\u6ce2\u65c1",
115
+ "\u76ee\u767d\u8d56\u6069",
116
+ "\u83f1\u66d9",
117
+ "\u96ea\u4e2d\u7f8e\u4eba",
118
+ "\u7c73\u6d74",
119
+ "\u827e\u5c3c\u65af\u98ce\u795e",
120
+ "\u7231\u4e3d\u901f\u5b50\uff08\u7231\u4e3d\u5feb\u5b50\uff09",
121
+ "\u7231\u6155\u7ec7\u59ec",
122
+ "\u7a3b\u8377\u4e00",
123
+ "\u80dc\u5229\u5956\u5238",
124
+ "\u7a7a\u4e2d\u795e\u5bab",
125
+ "\u8363\u8fdb\u95ea\u8000",
126
+ "\u771f\u673a\u4f36",
127
+ "\u5ddd\u4e0a\u516c\u4e3b",
128
+ "\u9ec4\u91d1\u57ce\uff08\u9ec4\u91d1\u57ce\u5e02\uff09",
129
+ "\u6a31\u82b1\u8fdb\u738b",
130
+ "\u91c7\u73e0",
131
+ "\u65b0\u5149\u98ce",
132
+ "\u4e1c\u5546\u53d8\u9769",
133
+ "\u8d85\u7ea7\u5c0f\u6d77\u6e7e",
134
+ "\u9192\u76ee\u98de\u9e70\uff08\u5bc4\u5bc4\u5b50\uff09",
135
+ "\u8352\u6f20\u82f1\u96c4",
136
+ "\u4e1c\u701b\u4f50\u6566",
137
+ "\u4e2d\u5c71\u5e86\u5178",
138
+ "\u6210\u7530\u5927\u8fdb",
139
+ "\u897f\u91ce\u82b1",
140
+ "\u6625\u4e3d\uff08\u4e4c\u62c9\u62c9\uff09",
141
+ "\u9752\u7af9\u56de\u5fc6",
142
+ "\u5fae\u5149\u98de\u9a79",
143
+ "\u7f8e\u4e3d\u5468\u65e5",
144
+ "\u5f85\u517c\u798f\u6765",
145
+ "mr cb\uff08cb\u5148\u751f\uff09",
146
+ "\u540d\u5c06\u6012\u6d9b\uff08\u540d\u5c06\u6237\u4ec1\uff09",
147
+ "\u76ee\u767d\u591a\u4f2f",
148
+ "\u4f18\u79c0\u7d20\u8d28",
149
+ "\u5e1d\u738b\u5149\u8f89",
150
+ "\u5f85\u517c\u8bd7\u6b4c\u5267",
151
+ "\u751f\u91ce\u72c4\u675c\u65af",
152
+ "\u76ee\u767d\u5584\u4fe1",
153
+ "\u5927\u62d3\u592a\u9633\u795e",
154
+ "\u53cc\u6da1\u8f6e\uff08\u4e24\u7acb\u76f4\uff0c\u4e24\u55b7\u5c04\uff0c\u4e8c\u9505\u5934\uff0c\u9006\u55b7\u5c04\uff09",
155
+ "\u91cc\u89c1\u5149\u94bb\uff08\u8428\u6258\u8bfa\u91d1\u521a\u77f3\uff09",
156
+ "\u5317\u90e8\u7384\u9a79",
157
+ "\u6a31\u82b1\u5343\u4ee3\u738b",
158
+ "\u5929\u72fc\u661f\u8c61\u5f81",
159
+ "\u76ee\u767d\u963f\u5c14\u4e39",
160
+ "\u516b\u91cd\u65e0\u654c",
161
+ "\u9e64\u4e38\u521a\u5fd7",
162
+ "\u76ee\u767d\u5149\u660e",
163
+ "\u6210\u7530\u62dc\u4ec1\uff08\u6210\u7530\u8def\uff09",
164
+ "\u4e5f\u6587\u6444\u8f89",
165
+ "\u5c0f\u6797\u5386\u5947",
166
+ "\u5317\u6e2f\u706b\u5c71",
167
+ "\u5947\u9510\u9a8f",
168
+ "\u82e6\u6da9\u7cd6\u971c",
169
+ "\u5c0f\u5c0f\u8695\u8327",
170
+ "\u9a8f\u5ddd\u624b\u7eb2\uff08\u7eff\u5e3d\u6076\u9b54\uff09",
171
+ "\u79cb\u5ddd\u5f25\u751f\uff08\u5c0f\u5c0f\u7406\u4e8b\u957f\uff09",
172
+ "\u4e59\u540d\u53f2\u60a6\u5b50\uff08\u4e59\u540d\u8bb0\u8005\uff09",
173
+ "\u6850\u751f\u9662\u8475",
174
+ "\u5b89\u5fc3\u6cfd\u523a\u523a\u7f8e",
175
+ "\u6a2b\u672c\u7406\u5b50",
176
+ "\u795e\u91cc\u7eeb\u534e\uff08\u9f9f\u9f9f\uff09",
177
+ "\u7434",
178
+ "\u7a7a\uff08\u7a7a\u54e5\uff09",
179
+ "\u4e3d\u838e",
180
+ "\u8367\uff08\u8367\u59b9\uff09",
181
+ "\u82ad\u82ad\u62c9",
182
+ "\u51ef\u4e9a",
183
+ "\u8fea\u5362\u514b",
184
+ "\u96f7\u6cfd",
185
+ "\u5b89\u67cf",
186
+ "\u6e29\u8fea",
187
+ "\u9999\u83f1",
188
+ "\u5317\u6597",
189
+ "\u884c\u79cb",
190
+ "\u9b48",
191
+ "\u51dd\u5149",
192
+ "\u53ef\u8389",
193
+ "\u949f\u79bb",
194
+ "\u83f2\u8c22\u5c14\uff08\u7687\u5973\uff09",
195
+ "\u73ed\u5c3c\u7279",
196
+ "\u8fbe\u8fbe\u5229\u4e9a\uff08\u516c\u5b50\uff09",
197
+ "\u8bfa\u827e\u5c14\uff08\u5973\u4ec6\uff09",
198
+ "\u4e03\u4e03",
199
+ "\u91cd\u4e91",
200
+ "\u7518\u96e8\uff08\u6930\u7f8a\uff09",
201
+ "\u963f\u8d1d\u591a",
202
+ "\u8fea\u5965\u5a1c\uff08\u732b\u732b\uff09",
203
+ "\u83ab\u5a1c",
204
+ "\u523b\u6674",
205
+ "\u7802\u7cd6",
206
+ "\u8f9b\u7131",
207
+ "\u7f57\u838e\u8389\u4e9a",
208
+ "\u80e1\u6843",
209
+ "\u67ab\u539f\u4e07\u53f6\uff08\u4e07\u53f6\uff09",
210
+ "\u70df\u7eef",
211
+ "\u5bb5\u5bab",
212
+ "\u6258\u9a6c",
213
+ "\u4f18\u83c8",
214
+ "\u96f7\u7535\u5c06\u519b\uff08\u96f7\u795e\uff09",
215
+ "\u65e9\u67da",
216
+ "\u73ca\u745a\u5bab\u5fc3\u6d77\uff08\u5fc3\u6d77\uff0c\u6263\u6263\u7c73\uff09",
217
+ "\u4e94\u90ce",
218
+ "\u4e5d\u6761\u88df\u7f57",
219
+ "\u8352\u6cf7\u4e00\u6597\uff08\u4e00\u6597\uff09",
220
+ "\u57c3\u6d1b\u4f0a",
221
+ "\u7533\u9e64",
222
+ "\u516b\u91cd\u795e\u5b50\uff08\u795e\u5b50\uff09",
223
+ "\u795e\u91cc\u7eeb\u4eba\uff08\u7eeb\u4eba\uff09",
224
+ "\u591c\u5170",
225
+ "\u4e45\u5c90\u5fcd",
226
+ "\u9e7f\u91ce\u82d1\u5e73\u85cf",
227
+ "\u63d0\u7eb3\u91cc",
228
+ "\u67ef\u83b1",
229
+ "\u591a\u8389",
230
+ "\u4e91\u5807",
231
+ "\u7eb3\u897f\u59b2\uff08\u8349\u795e\uff09",
232
+ "\u6df1\u6e0a\u4f7f\u5f92",
233
+ "\u59ae\u9732",
234
+ "\u8d5b\u8bfa",
235
+ "\u503a\u52a1\u5904\u7406\u4eba",
236
+ "\u574e\u8482\u4e1d",
237
+ "\u771f\u5f13\u5feb\u8f66",
238
+ "\u79cb\u4eba",
239
+ "\u671b\u65cf",
240
+ "\u827e\u5c14\u83f2",
241
+ "\u827e\u8389\u4e1d",
242
+ "\u827e\u4f26",
243
+ "\u963f\u6d1b\u74e6",
244
+ "\u5929\u91ce",
245
+ "\u5929\u76ee\u5341\u4e94",
246
+ "\u611a\u4eba\u4f17-\u5b89\u5fb7\u70c8",
247
+ "\u5b89\u987a",
248
+ "\u5b89\u897f",
249
+ "\u8475",
250
+ "\u9752\u6728",
251
+ "\u8352\u5ddd\u5e78\u6b21",
252
+ "\u8352\u8c37",
253
+ "\u6709\u6cfd",
254
+ "\u6d45\u5ddd",
255
+ "\u9ebb\u7f8e",
256
+ "\u51dd\u5149\u52a9\u624b",
257
+ "\u963f\u6258",
258
+ "\u7afa\u5b50",
259
+ "\u767e\u8bc6",
260
+ "\u767e\u95fb",
261
+ "\u767e\u6653",
262
+ "\u767d\u672f",
263
+ "\u8d1d\u96c5\u7279\u4e3d\u5947",
264
+ "\u4e3d\u5854",
265
+ "\u5931\u843d\u8ff7\u8fed",
266
+ "\u7f2d\u4e71\u661f\u68d8",
267
+ "\u4f0a\u7538",
268
+ "\u4f0f\u7279\u52a0\u5973\u5b69",
269
+ "\u72c2\u70ed\u84dd\u8c03",
270
+ "\u8389\u8389\u5a05",
271
+ "\u841d\u838e\u8389\u5a05",
272
+ "\u516b\u91cd\u6a31",
273
+ "\u516b\u91cd\u971e",
274
+ "\u5361\u83b2",
275
+ "\u7b2c\u516d\u591c\u60f3\u66f2",
276
+ "\u5361\u841d\u5c14",
277
+ "\u59ec\u5b50",
278
+ "\u6781\u5730\u6218\u5203",
279
+ "\u5e03\u6d1b\u59ae\u5a05",
280
+ "\u6b21\u751f\u94f6\u7ffc",
281
+ "\u7406\u4e4b\u5f8b\u8005%26\u5e0c\u513f",
282
+ "\u7406\u4e4b\u5f8b\u8005",
283
+ "\u8ff7\u57ce\u9a87\u5154",
284
+ "\u5e0c\u513f",
285
+ "\u9b47\u591c\u661f\u6e0a",
286
+ "\u9ed1\u5e0c\u513f",
287
+ "\u5e15\u6735\u83f2\u8389\u4e1d",
288
+ "\u4e0d\u706d\u661f\u951a",
289
+ "\u5929\u5143\u9a91\u82f1",
290
+ "\u5e7d\u5170\u9edb\u5c14",
291
+ "\u6d3e\u8499bh3",
292
+ "\u7231\u9171",
293
+ "\u7eef\u7389\u4e38",
294
+ "\u5fb7\u4e3d\u838e",
295
+ "\u6708\u4e0b\u521d\u62e5",
296
+ "\u6714\u591c\u89c2\u661f",
297
+ "\u66ae\u5149\u9a91\u58eb",
298
+ "\u683c\u857e\u4fee",
299
+ "\u7559\u4e91\u501f\u98ce\u771f\u541b",
300
+ "\u6885\u6bd4\u4e4c\u65af",
301
+ "\u4eff\u72b9\u5927",
302
+ "\u514b\u83b1\u56e0",
303
+ "\u5723\u5251\u5e7d\u5170\u9edb\u5c14",
304
+ "\u5996\u7cbe\u7231\u8389",
305
+ "\u7279\u65af\u62c9zero",
306
+ "\u82cd\u7384",
307
+ "\u82e5\u6c34",
308
+ "\u897f\u7433",
309
+ "\u6234\u56e0\u65af\u96f7\u5e03",
310
+ "\u8d1d\u62c9",
311
+ "\u8d64\u9e22",
312
+ "\u9547\u9b42\u6b4c",
313
+ "\u6e21\u9e26",
314
+ "\u4eba\u4e4b\u5f8b\u8005",
315
+ "\u7231\u8389\u5e0c\u96c5",
316
+ "\u5929\u7a79\u6e38\u4fa0",
317
+ "\u742a\u4e9a\u5a1c",
318
+ "\u7a7a\u4e4b\u5f8b\u8005",
319
+ "\u85aa\u708e\u4e4b\u5f8b\u8005",
320
+ "\u4e91\u58a8\u4e39\u5fc3",
321
+ "\u7b26\u534e",
322
+ "\u8bc6\u4e4b\u5f8b\u8005",
323
+ "\u7279\u74e6\u6797",
324
+ "\u7ef4\u5c14\u8587",
325
+ "\u82bd\u8863",
326
+ "\u96f7\u4e4b\u5f8b\u8005",
327
+ "\u65ad\u7f6a\u5f71\u821e",
328
+ "\u963f\u6ce2\u5c3c\u4e9a",
329
+ "\u698e\u672c",
330
+ "\u5384\u5c3c\u65af\u7279",
331
+ "\u6076\u9f99",
332
+ "\u8303\u4e8c\u7237",
333
+ "\u6cd5\u62c9",
334
+ "\u611a\u4eba\u4f17\u58eb\u5175",
335
+ "\u611a\u4eba\u4f17\u58eb\u5175a",
336
+ "\u611a\u4eba\u4f17\u58eb\u5175b",
337
+ "\u611a\u4eba\u4f17\u58eb\u5175c",
338
+ "\u611a\u4eba\u4f17a",
339
+ "\u611a\u4eba\u4f17b",
340
+ "\u98de\u98de",
341
+ "\u83f2\u5229\u514b\u65af",
342
+ "\u5973\u6027\u8ddf\u968f\u8005",
343
+ "\u9022\u5ca9",
344
+ "\u6446\u6e21\u4eba",
345
+ "\u72c2\u8e81\u7684\u7537\u4eba",
346
+ "\u5965\u5179",
347
+ "\u8299\u841d\u62c9",
348
+ "\u8ddf\u968f\u8005",
349
+ "\u871c\u6c41\u751f\u7269",
350
+ "\u9ec4\u9ebb\u5b50",
351
+ "\u6e0a\u4e0a",
352
+ "\u85e4\u6728",
353
+ "\u6df1\u89c1",
354
+ "\u798f\u672c",
355
+ "\u8299\u84c9",
356
+ "\u53e4\u6cfd",
357
+ "\u53e4\u7530",
358
+ "\u53e4\u5c71",
359
+ "\u53e4\u8c37\u6607",
360
+ "\u5085\u4e09\u513f",
361
+ "\u9ad8\u8001\u516d",
362
+ "\u77ff\u5de5\u5192",
363
+ "\u5143\u592a",
364
+ "\u5fb7\u5b89\u516c",
365
+ "\u8302\u624d\u516c",
366
+ "\u6770\u62c9\u5fb7",
367
+ "\u845b\u7f57\u4e3d",
368
+ "\u91d1\u5ffd\u5f8b",
369
+ "\u516c\u4fca",
370
+ "\u9505\u5df4",
371
+ "\u6b4c\u5fb7",
372
+ "\u963f\u8c6a",
373
+ "\u72d7\u4e09\u513f",
374
+ "\u845b\u745e\u4e1d",
375
+ "\u82e5\u5fc3",
376
+ "\u963f\u5c71\u5a46",
377
+ "\u602a\u9e1f",
378
+ "\u5e7f\u7af9",
379
+ "\u89c2\u6d77",
380
+ "\u5173\u5b8f",
381
+ "\u871c\u6c41\u536b\u5175",
382
+ "\u5b88\u536b1",
383
+ "\u50b2\u6162\u7684\u5b88\u536b",
384
+ "\u5bb3\u6015\u7684\u5b88\u536b",
385
+ "\u8d35\u5b89",
386
+ "\u76d6\u4f0a",
387
+ "\u963f\u521b",
388
+ "\u54c8\u592b\u4e39",
389
+ "\u65e5\u8bed\u963f\u8d1d\u591a\uff08\u91ce\u5c9b\u5065\u513f\uff09",
390
+ "\u65e5\u8bed\u57c3\u6d1b\u4f0a\uff08\u9ad8\u57a3\u5f69\u9633\uff09",
391
+ "\u65e5\u8bed\u5b89\u67cf\uff08\u77f3\u89c1\u821e\u83dc\u9999\uff09",
392
+ "\u65e5\u8bed\u795e\u91cc\u7eeb\u534e\uff08\u65e9\u89c1\u6c99\u7ec7\uff09",
393
+ "\u65e5\u8bed\u795e\u91cc\u7eeb\u4eba\uff08\u77f3\u7530\u5f70\uff09",
394
+ "\u65e5\u8bed\u767d\u672f\uff08\u6e38\u4f50\u6d69\u4e8c\uff09",
395
+ "\u65e5\u8bed\u82ad\u82ad\u62c9\uff08\u9b3c\u5934\u660e\u91cc\uff09",
396
+ "\u65e5\u8bed\u5317\u6597\uff08\u5c0f\u6e05\u6c34\u4e9a\u7f8e\uff09",
397
+ "\u65e5\u8bed\u73ed\u5c3c\u7279\uff08\u9022\u5742\u826f\u592a\uff09",
398
+ "\u65e5\u8bed\u574e\u8482\u4e1d\uff08\u67da\u6728\u51c9\u9999\uff09",
399
+ "\u65e5\u8bed\u91cd\u4e91\uff08\u9f50\u85e4\u58ee\u9a6c\uff09",
400
+ "\u65e5\u8bed\u67ef\u83b1\uff08\u524d\u5ddd\u51c9\u5b50\uff09",
401
+ "\u65e5\u8bed\u8d5b\u8bfa\uff08\u5165\u91ce\u81ea\u7531\uff09",
402
+ "\u65e5\u8bed\u6234\u56e0\u65af\u96f7\u5e03\uff08\u6d25\u7530\u5065\u6b21\u90ce\uff09",
403
+ "\u65e5\u8bed\u8fea\u5362\u514b\uff08\u5c0f\u91ce\u8d24\u7ae0\uff09",
404
+ "\u65e5\u8bed\u8fea\u5965\u5a1c\uff08\u4e95\u6cfd\u8bd7\u7ec7\uff09",
405
+ "\u65e5\u8bed\u591a\u8389\uff08\u91d1\u7530\u670b\u5b50\uff09",
406
+ "\u65e5\u8bed\u4f18\u83c8\uff08\u4f50\u85e4\u5229\u5948\uff09",
407
+ "\u65e5\u8bed\u83f2\u8c22\u5c14\uff08\u5185\u7530\u771f\u793c\uff09",
408
+ "\u65e5\u8bed\u7518\u96e8\uff08\u4e0a\u7530\u4e3d\u5948\uff09",
409
+ "\u65e5\u8bed\uff08\u7560\u4e2d\u7950\uff09",
410
+ "\u65e5\u8bed\u9e7f\u91ce\u9662\u5e73\u85cf\uff08\u4e95\u53e3\u7950\u4e00\uff09",
411
+ "\u65e5\u8bed\u7a7a\uff08\u5800\u6c5f\u77ac\uff09",
412
+ "\u65e5\u8bed\u8367\uff08\u60a0\u6728\u78a7\uff09",
413
+ "\u65e5\u8bed\u80e1\u6843\uff08\u9ad8\u6865\u674e\u4f9d\uff09",
414
+ "\u65e5\u8bed\u4e00\u6597\uff08\u897f\u5ddd\u8d35\u6559\uff09",
415
+ "\u65e5\u8bed\u51ef\u4e9a\uff08\u9e1f\u6d77\u6d69\u8f85\uff09",
416
+ "\u65e5\u8bed\u4e07\u53f6\uff08\u5c9b\u5d0e\u4fe1\u957f\uff09",
417
+ "\u65e5\u8bed\u523b\u6674\uff08\u559c\u591a\u6751\u82f1\u68a8\uff09",
418
+ "\u65e5\u8bed\u53ef\u8389\uff08\u4e45\u91ce\u7f8e\u54b2\uff09",
419
+ "\u65e5\u8bed\u5fc3\u6d77\uff08\u4e09\u68ee\u94c3\u5b50\uff09",
420
+ "\u65e5\u8bed\u4e5d\u6761\u88df\u7f57\uff08\u6fd1\u6237\u9ebb\u6c99\u7f8e\uff09",
421
+ "\u65e5\u8bed\u4e3d\u838e\uff08\u7530\u4e2d\u7406\u60e0\uff09",
422
+ "\u65e5\u8bed\u83ab\u5a1c\uff08\u5c0f\u539f\u597d\u7f8e\uff09",
423
+ "\u65e5\u8bed\u7eb3\u897f\u59b2\uff08\u7530\u6751\u7531\u52a0\u8389\uff09",
424
+ "\u65e5\u8bed\u59ae\u9732\uff08\u91d1\u5143\u5bff\u5b50\uff09",
425
+ "\u65e5\u8bed\u51dd\u5149\uff08\u5927\u539f\u6c99\u8036\u9999\uff09",
426
+ "\u65e5\u8bed\u8bfa\u827e\u5c14\uff08\u9ad8\u5c3e\u594f\u97f3\uff09",
427
+ "\u65e5\u8bed\u5965\u5179\uff08\u589e\u8c37\u5eb7\u7eaa\uff09",
428
+ "\u65e5\u8bed\u6d3e\u8499\uff08\u53e4\u8d3a\u8475\uff09",
429
+ "\u65e5\u8bed\u7434\uff08\u658b\u85e4\u5343\u548c\uff09",
430
+ "\u65e5\u8bed\u4e03\u4e03\uff08\u7530\u6751\u7531\u52a0\u8389\uff09",
431
+ "\u65e5\u8bed\u96f7\u7535\u5c06\u519b\uff08\u6cfd\u57ce\u7f8e\u96ea\uff09",
432
+ "\u65e5\u8bed\u96f7\u6cfd\uff08\u5185\u5c71\u6602\u8f89\uff09",
433
+ "\u65e5\u8bed\u7f57\u838e\u8389\u4e9a\uff08\u52a0\u9688\u4e9a\u8863\uff09",
434
+ "\u65e5\u8bed\u65e9\u67da\uff08\u6d32\u5d0e\u7eeb\uff09",
435
+ "\u65e5\u8bed\u6563\u5175\uff08\u67ff\u539f\u5f7b\u4e5f\uff09",
436
+ "\u65e5\u8bed\u7533\u9e64\uff08\u5ddd\u6f84\u7eeb\u5b50\uff09",
437
+ "\u65e5\u8bed\u4e45\u5c90\u5fcd\uff08\u6c34\u6865\u9999\u7ec7\uff09",
438
+ "\u65e5\u8bed\u5973\u58eb\uff08\u5e84\u5b50\u88d5\u8863\uff09",
439
+ "\u65e5\u8bed\u7802\u7cd6\uff08\u85e4\u7530\u831c\uff09",
440
+ "\u65e5\u8bed\u8fbe\u8fbe\u5229\u4e9a\uff08\u6728\u6751\u826f\u5e73\uff09",
441
+ "\u65e5\u8bed\u6258\u9a6c\uff08\u68ee\u7530\u6210\u4e00\uff09",
442
+ "\u65e5\u8bed\u63d0\u7eb3\u91cc\uff08\u5c0f\u6797\u6c99\u82d7\uff09",
443
+ "\u65e5\u8bed\u6e29\u8fea\uff08\u6751\u6fd1\u6b65\uff09",
444
+ "\u65e5\u8bed\u9999\u83f1\uff08\u5c0f\u6cfd\u4e9a\u674e\uff09",
445
+ "\u65e5\u8bed\u9b48\uff08\u677e\u5188\u796f\u4e1e\uff09",
446
+ "\u65e5\u8bed\u884c\u79cb\uff08\u7686\u5ddd\u7eaf\u5b50\uff09",
447
+ "\u65e5\u8bed\u8f9b\u7131\uff08\u9ad8\u6865\u667a\u79cb\uff09",
448
+ "\u65e5\u8bed\u516b\u91cd\u795e\u5b50\uff08\u4f50\u4ed3\u7eeb\u97f3\uff09",
449
+ "\u65e5\u8bed\u70df\u7eef\uff08\u82b1\u5b88\u7531\u7f8e\u91cc\uff09",
450
+ "\u65e5\u8bed\u591c\u5170\uff08\u8fdc\u85e4\u7eeb\uff09",
451
+ "\u65e5\u8bed\u5bb5\u5bab\uff08\u690d\u7530\u4f73\u5948\uff09",
452
+ "\u65e5\u8bed\u4e91\u5807\uff08\u5c0f\u5ca9\u4e95\u5c0f\u9e1f\uff09",
453
+ "\u65e5\u8bed\u949f\u79bb\uff08\u524d\u91ce\u667a\u662d\uff09",
454
+ "\u6770\u514b",
455
+ "\u963f\u5409",
456
+ "\u6c5f\u821f",
457
+ "\u9274\u79cb",
458
+ "\u5609\u4e49",
459
+ "\u7eaa\u82b3",
460
+ "\u666f\u6f84",
461
+ "\u7ecf\u7eb6",
462
+ "\u666f\u660e",
463
+ "\u664b\u4f18",
464
+ "\u963f\u9e20",
465
+ "\u9152\u5ba2",
466
+ "\u4e54\u5c14",
467
+ "\u4e54\u745f\u592b",
468
+ "\u7ea6\u987f",
469
+ "\u4e54\u4f0a\u65af",
470
+ "\u5c45\u5b89",
471
+ "\u541b\u541b",
472
+ "\u987a\u5409",
473
+ "\u7eaf\u4e5f",
474
+ "\u91cd\u4f50",
475
+ "\u5927\u5c9b\u7eaf\u5e73",
476
+ "\u84b2\u6cfd",
477
+ "\u52d8\u89e3\u7531\u5c0f\u8def\u5065\u4e09\u90ce",
478
+ "\u67ab",
479
+ "\u67ab\u539f\u4e49\u5e86",
480
+ "\u836b\u5c71",
481
+ "\u7532\u6590\u7530\u9f8d\u99ac",
482
+ "\u6d77\u6597",
483
+ "\u60df\u795e\u6674\u4e4b\u4ecb",
484
+ "\u9e7f\u91ce\u5948\u5948",
485
+ "\u5361\u7435\u8389\u4e9a",
486
+ "\u51ef\u745f\u7433",
487
+ "\u52a0\u85e4\u4fe1\u609f",
488
+ "\u52a0\u85e4\u6d0b\u5e73",
489
+ "\u80dc\u5bb6",
490
+ "\u8305\u847a\u4e00\u5e86",
491
+ "\u548c\u662d",
492
+ "\u4e00\u6b63",
493
+ "\u4e00\u9053",
494
+ "\u6842\u4e00",
495
+ "\u5e86\u6b21\u90ce",
496
+ "\u963f\u8d24",
497
+ "\u5065\u53f8",
498
+ "\u5065\u6b21\u90ce",
499
+ "\u5065\u4e09\u90ce",
500
+ "\u5929\u7406",
501
+ "\u6740\u624ba",
502
+ "\u6740\u624bb",
503
+ "\u6728\u5357\u674f\u5948",
504
+ "\u6728\u6751",
505
+ "\u56fd\u738b",
506
+ "\u6728\u4e0b",
507
+ "\u5317\u6751",
508
+ "\u6e05\u60e0",
509
+ "\u6e05\u4eba",
510
+ "\u514b\u5217\u95e8\u7279",
511
+ "\u9a91\u58eb",
512
+ "\u5c0f\u6797",
513
+ "\u5c0f\u6625",
514
+ "\u5eb7\u62c9\u5fb7",
515
+ "\u5927\u8089\u4e38",
516
+ "\u7434\u7f8e",
517
+ "\u5b8f\u4e00",
518
+ "\u5eb7\u4ecb",
519
+ "\u5e78\u5fb7",
520
+ "\u9ad8\u5584",
521
+ "\u68a2",
522
+ "\u514b\u7f57\u7d22",
523
+ "\u4e45\u4fdd",
524
+ "\u4e5d\u6761\u9570\u6cbb",
525
+ "\u4e45\u6728\u7530",
526
+ "\u6606\u94a7",
527
+ "\u83ca\u5730\u541b",
528
+ "\u4e45\u5229\u987b",
529
+ "\u9ed1\u7530",
530
+ "\u9ed1\u6cfd\u4eac\u4e4b\u4ecb",
531
+ "\u54cd\u592a",
532
+ "\u5c9a\u59d0",
533
+ "\u5170\u6eaa",
534
+ "\u6f9c\u9633",
535
+ "\u52b3\u4f26\u65af",
536
+ "\u4e50\u660e",
537
+ "\u83b1\u8bfa",
538
+ "\u83b2",
539
+ "\u826f\u5b50",
540
+ "\u674e\u5f53",
541
+ "\u674e\u4e01",
542
+ "\u5c0f\u4e50",
543
+ "\u7075",
544
+ "\u5c0f\u73b2",
545
+ "\u7433\u7405a",
546
+ "\u7433\u7405b",
547
+ "\u5c0f\u5f6c",
548
+ "\u5c0f\u5fb7",
549
+ "\u5c0f\u697d",
550
+ "\u5c0f\u9f99",
551
+ "\u5c0f\u5434",
552
+ "\u5c0f\u5434\u7684\u8bb0\u5fc6",
553
+ "\u7406\u6b63",
554
+ "\u963f\u9f99",
555
+ "\u5362\u5361",
556
+ "\u6d1b\u6210",
557
+ "\u7f57\u5de7",
558
+ "\u5317\u98ce\u72fc",
559
+ "\u5362\u6b63",
560
+ "\u840d\u59e5\u59e5",
561
+ "\u524d\u7530",
562
+ "\u771f\u663c",
563
+ "\u9ebb\u7eaa",
564
+ "\u771f",
565
+ "\u611a\u4eba\u4f17-\u9a6c\u514b\u897f\u59c6",
566
+ "\u5973\u6027a",
567
+ "\u5973\u6027b",
568
+ "\u5973\u6027a\u7684\u8ddf\u968f\u8005",
569
+ "\u963f\u5b88",
570
+ "\u739b\u683c\u4e3d\u7279",
571
+ "\u771f\u7406",
572
+ "\u739b\u4e54\u4e3d",
573
+ "\u739b\u6587",
574
+ "\u6b63\u80dc",
575
+ "\u660c\u4fe1",
576
+ "\u5c06\u53f8",
577
+ "\u6b63\u4eba",
578
+ "\u8def\u7237",
579
+ "\u8001\u7ae0",
580
+ "\u677e\u7530",
581
+ "\u677e\u672c",
582
+ "\u677e\u6d66",
583
+ "\u677e\u5742",
584
+ "\u8001\u5b5f",
585
+ "\u5b5f\u4e39",
586
+ "\u5546\u4eba\u968f\u4ece",
587
+ "\u4f20\u4ee4\u5175",
588
+ "\u7c73\u6b47\u5c14",
589
+ "\u5fa1\u8206\u6e90\u4e00\u90ce",
590
+ "\u5fa1\u8206\u6e90\u6b21\u90ce",
591
+ "\u5343\u5ca9\u519b\u6559\u5934",
592
+ "\u5343\u5ca9\u519b\u58eb\u5175",
593
+ "\u660e\u535a",
594
+ "\u660e\u4fca",
595
+ "\u7f8e\u94c3",
596
+ "\u7f8e\u548c",
597
+ "\u963f\u5e78",
598
+ "\u524a\u6708\u7b51\u9633\u771f\u541b",
599
+ "\u94b1\u773c\u513f",
600
+ "\u68ee\u5f66",
601
+ "\u5143\u52a9",
602
+ "\u7406\u6c34\u53e0\u5c71\u771f\u541b",
603
+ "\u7406\u6c34\u758a\u5c71\u771f\u541b",
604
+ "\u6731\u8001\u677f",
605
+ "\u6728\u6728",
606
+ "\u6751\u4e0a",
607
+ "\u6751\u7530",
608
+ "\u6c38\u91ce",
609
+ "\u957f\u91ce\u539f\u9f99\u4e4b\u4ecb",
610
+ "\u957f\u6fd1",
611
+ "\u4e2d\u91ce\u5fd7\u4e43",
612
+ "\u83dc\u83dc\u5b50",
613
+ "\u6960\u6960",
614
+ "\u6210\u6fd1",
615
+ "\u963f\u5185",
616
+ "\u5b81\u7984",
617
+ "\u725b\u5fd7",
618
+ "\u4fe1\u535a",
619
+ "\u4f38\u592b",
620
+ "\u91ce\u65b9",
621
+ "\u8bfa\u62c9",
622
+ "\u7eaa\u9999",
623
+ "\u8bfa\u66fc",
624
+ "\u4fee\u5973",
625
+ "\u7eaf\u6c34\u7cbe\u7075",
626
+ "\u5c0f\u5ddd",
627
+ "\u5c0f\u4ed3\u6faa",
628
+ "\u5188\u6797",
629
+ "\u5188\u5d0e\u7ed8\u91cc\u9999",
630
+ "\u5188\u5d0e\u9646\u6597",
631
+ "\u5965\u62c9\u592b",
632
+ "\u8001\u79d1",
633
+ "\u9b3c\u5a46\u5a46",
634
+ "\u5c0f\u91ce\u5bfa",
635
+ "\u5927\u6cb3\u539f\u4e94\u53f3\u536b\u95e8",
636
+ "\u5927\u4e45\u4fdd\u5927\u4ecb",
637
+ "\u5927\u68ee",
638
+ "\u5927\u52a9",
639
+ "\u5965\u7279",
640
+ "\u6d3e\u8499",
641
+ "\u6d3e\u84992",
642
+ "\u75c5\u4ebaa",
643
+ "\u75c5\u4ebab",
644
+ "\u5df4\u987f",
645
+ "\u6d3e\u6069",
646
+ "\u670b\u4e49",
647
+ "\u56f4\u89c2\u7fa4\u4f17",
648
+ "\u56f4\u89c2\u7fa4\u4f17a",
649
+ "\u56f4\u89c2\u7fa4\u4f17b",
650
+ "\u56f4\u89c2\u7fa4\u4f17c",
651
+ "\u56f4\u89c2\u7fa4\u4f17d",
652
+ "\u56f4\u89c2\u7fa4\u4f17e",
653
+ "\u94dc\u96c0",
654
+ "\u963f\u80a5",
655
+ "\u5174\u53d4",
656
+ "\u8001\u5468\u53d4",
657
+ "\u516c\u4e3b",
658
+ "\u5f7c\u5f97",
659
+ "\u4e7e\u5b50",
660
+ "\u828a\u828a",
661
+ "\u4e7e\u73ae",
662
+ "\u7eee\u547d",
663
+ "\u675e\u5e73",
664
+ "\u79cb\u6708",
665
+ "\u6606\u6069",
666
+ "\u96f7\u7535\u5f71",
667
+ "\u5170\u9053\u5c14",
668
+ "\u96f7\u8499\u5fb7",
669
+ "\u5192\u5931\u7684\u5e15\u62c9\u5fb7",
670
+ "\u4f36\u4e00",
671
+ "\u73b2\u82b1",
672
+ "\u963f\u4ec1",
673
+ "\u5bb6\u81e3\u4eec",
674
+ "\u68a8\u7ed8",
675
+ "\u8363\u6c5f",
676
+ "\u620e\u4e16",
677
+ "\u6d6a\u4eba",
678
+ "\u7f57\u4f0a\u65af",
679
+ "\u5982\u610f",
680
+ "\u51c9\u5b50",
681
+ "\u5f69\u9999",
682
+ "\u9152\u4e95",
683
+ "\u5742\u672c",
684
+ "\u6714\u6b21\u90ce",
685
+ "\u6b66\u58eba",
686
+ "\u6b66\u58ebb",
687
+ "\u6b66\u58ebc",
688
+ "\u6b66\u58ebd",
689
+ "\u73ca\u745a",
690
+ "\u4e09\u7530",
691
+ "\u838e\u62c9",
692
+ "\u7b39\u91ce",
693
+ "\u806a\u7f8e",
694
+ "\u806a",
695
+ "\u5c0f\u767e\u5408",
696
+ "\u6563\u5175",
697
+ "\u5bb3\u6015\u7684\u5c0f\u5218",
698
+ "\u8212\u4f2f\u7279",
699
+ "\u8212\u8328",
700
+ "\u6d77\u9f99",
701
+ "\u4e16\u5b50",
702
+ "\u8c22\u5c14\u76d6",
703
+ "\u5bb6\u4e01",
704
+ "\u5546\u534e",
705
+ "\u6c99\u5bc5",
706
+ "\u963f\u5347",
707
+ "\u67f4\u7530",
708
+ "\u963f\u8302",
709
+ "\u5f0f\u5927\u5c06",
710
+ "\u6e05\u6c34",
711
+ "\u5fd7\u6751\u52d8\u5175\u536b",
712
+ "\u65b0\u4e4b\u4e1e",
713
+ "\u5fd7\u7ec7",
714
+ "\u77f3\u5934",
715
+ "\u8bd7\u7fbd",
716
+ "\u8bd7\u7b60",
717
+ "\u77f3\u58ee",
718
+ "\u7fd4\u592a",
719
+ "\u6b63\u4e8c",
720
+ "\u5468\u5e73",
721
+ "\u8212\u6768",
722
+ "\u9f50\u683c\u8299\u4e3d\u96c5",
723
+ "\u5973\u58eb",
724
+ "\u601d\u52e4",
725
+ "\u516d\u6307\u4e54\u745f",
726
+ "\u611a\u4eba\u4f17\u5c0f\u5175d",
727
+ "\u611a\u4eba\u4f17\u5c0f\u5175a",
728
+ "\u611a\u4eba\u4f17\u5c0f\u5175b",
729
+ "\u611a\u4eba\u4f17\u5c0f\u5175c",
730
+ "\u5434\u8001\u4e94",
731
+ "\u5434\u8001\u4e8c",
732
+ "\u6ed1\u5934\u9b3c",
733
+ "\u8a00\u7b11",
734
+ "\u5434\u8001\u4e03",
735
+ "\u58eb\u5175h",
736
+ "\u58eb\u5175i",
737
+ "\u58eb\u5175a",
738
+ "\u58eb\u5175b",
739
+ "\u58eb\u5175c",
740
+ "\u58eb\u5175d",
741
+ "\u58eb\u5175e",
742
+ "\u58eb\u5175f",
743
+ "\u58eb\u5175g",
744
+ "\u594f\u592a",
745
+ "\u65af\u5766\u5229",
746
+ "\u6387\u661f\u652b\u8fb0\u5929\u541b",
747
+ "\u5c0f\u5934",
748
+ "\u5927\u6b66",
749
+ "\u9676\u4e49\u9686",
750
+ "\u6749\u672c",
751
+ "\u82cf\u897f",
752
+ "\u5acc\u7591\u4ebaa",
753
+ "\u5acc\u7591\u4ebab",
754
+ "\u5acc\u7591\u4ebac",
755
+ "\u5acc\u7591\u4ebad",
756
+ "\u65af\u4e07",
757
+ "\u5251\u5ba2a",
758
+ "\u5251\u5ba2b",
759
+ "\u963f\u4e8c",
760
+ "\u5fe0\u80dc",
761
+ "\u5fe0\u592b",
762
+ "\u963f\u656c",
763
+ "\u5b5d\u5229",
764
+ "\u9e70\u53f8\u8fdb",
765
+ "\u9ad8\u5c71",
766
+ "\u4e5d\u6761\u5b5d\u884c",
767
+ "\u6bc5",
768
+ "\u7af9\u5185",
769
+ "\u62d3\u771f",
770
+ "\u5353\u4e5f",
771
+ "\u592a\u90ce\u4e38",
772
+ "\u6cf0\u52d2",
773
+ "\u624b\u5c9b",
774
+ "\u54f2\u5e73",
775
+ "\u54f2\u592b",
776
+ "\u6258\u514b",
777
+ "\u5927boss",
778
+ "\u963f\u5f3a",
779
+ "\u6258\u5c14\u5fb7\u62c9",
780
+ "\u65c1\u89c2\u8005",
781
+ "\u5929\u6210",
782
+ "\u963f\u5927",
783
+ "\u8482\u739b\u4e4c\u65af",
784
+ "\u63d0\u7c73",
785
+ "\u6237\u7530",
786
+ "\u963f\u4e09",
787
+ "\u4e00\u8d77\u7684\u4eba",
788
+ "\u5fb7\u7530",
789
+ "\u5fb7\u957f",
790
+ "\u667a\u6811",
791
+ "\u5229\u5f66",
792
+ "\u80d6\u4e4e\u4e4e\u7684\u65c5\u884c\u8005",
793
+ "\u85cf\u5b9d\u4ebaa",
794
+ "\u85cf\u5b9d\u4ebab",
795
+ "\u85cf\u5b9d\u4ebac",
796
+ "\u85cf\u5b9d\u4ebad",
797
+ "\u963f\u7947",
798
+ "\u6052\u96c4",
799
+ "\u9732\u5b50",
800
+ "\u8bdd\u5267\u56e2\u56e2\u957f",
801
+ "\u5185\u6751",
802
+ "\u4e0a\u91ce",
803
+ "\u4e0a\u6749",
804
+ "\u8001\u6234",
805
+ "\u8001\u9ad8",
806
+ "\u8001\u8d3e",
807
+ "\u8001\u58a8",
808
+ "\u8001\u5b59",
809
+ "\u5929\u67a2\u661f",
810
+ "\u8001\u4e91",
811
+ "\u6709\u4e50\u658b",
812
+ "\u4e11\u96c4",
813
+ "\u4e4c\u7ef4",
814
+ "\u74e6\u4eac",
815
+ "\u83f2\u5c14\u6208\u9edb\u7279",
816
+ "\u7ef4\u591a\u5229\u4e9a",
817
+ "\u8587\u5c14",
818
+ "\u74e6\u683c\u7eb3",
819
+ "\u963f\u5916",
820
+ "\u4f8d\u5973",
821
+ "\u74e6\u62c9",
822
+ "\u671b\u96c5",
823
+ "\u5b9b\u70df",
824
+ "\u742c\u7389",
825
+ "\u6218\u58eba",
826
+ "\u6218\u58ebb",
827
+ "\u6e21\u8fba",
828
+ "\u6e21\u90e8",
829
+ "\u963f\u4f1f",
830
+ "\u6587\u749f",
831
+ "\u6587\u6e0a",
832
+ "\u97e6\u5c14\u7eb3",
833
+ "\u738b\u6273\u624b",
834
+ "\u6b66\u6c9b",
835
+ "\u6653\u98de",
836
+ "\u8f9b\u7a0b",
837
+ "\u661f\u706b",
838
+ "\u661f\u7a00",
839
+ "\u8f9b\u79c0",
840
+ "\u79c0\u534e",
841
+ "\u963f\u65ed",
842
+ "\u5f90\u5218\u5e08",
843
+ "\u77e2\u90e8",
844
+ "\u516b\u6728",
845
+ "\u5c71\u4e0a",
846
+ "\u963f\u9633",
847
+ "\u989c\u7b11",
848
+ "\u5eb7\u660e",
849
+ "\u6cf0\u4e45",
850
+ "\u5b89\u6b66",
851
+ "\u77e2\u7530\u5e78\u559c",
852
+ "\u77e2\u7530\u8f9b\u559c",
853
+ "\u4e49\u575a",
854
+ "\u83ba\u513f",
855
+ "\u76c8\u4e30",
856
+ "\u5b9c\u5e74",
857
+ "\u94f6\u674f",
858
+ "\u9038\u8f69",
859
+ "\u6a2a\u5c71",
860
+ "\u6c38\u8d35",
861
+ "\u6c38\u4e1a",
862
+ "\u5609\u4e45",
863
+ "\u5409\u5ddd",
864
+ "\u4e49\u9ad8",
865
+ "\u7528\u9ad8",
866
+ "\u9633\u592a",
867
+ "\u5143\u84c9",
868
+ "\u73a5\u8f89",
869
+ "\u6bd3\u534e",
870
+ "\u6709\u9999",
871
+ "\u5e78\u4e5f",
872
+ "\u7531\u771f",
873
+ "\u7ed3\u83dc",
874
+ "\u97f5\u5b81",
875
+ "\u767e\u5408",
876
+ "\u767e\u5408\u534e",
877
+ "\u5c24\u82cf\u6ce2\u592b",
878
+ "\u88d5\u5b50",
879
+ "\u60a0\u7b56",
880
+ "\u60a0\u4e5f",
881
+ "\u4e8e\u5ae3",
882
+ "\u67da\u5b50",
883
+ "\u8001\u90d1",
884
+ "\u6b63\u8302",
885
+ "\u5fd7\u6210",
886
+ "\u82b7\u5de7",
887
+ "\u77e5\u6613",
888
+ "\u652f\u652f",
889
+ "\u5468\u826f",
890
+ "\u73e0\u51fd",
891
+ "\u795d\u660e",
892
+ "\u795d\u6d9b"
893
+ ],
894
+ "symbols": [
895
+ "_",
896
+ ",",
897
+ ".",
898
+ "!",
899
+ "?",
900
+ "-",
901
+ "~",
902
+ "\u2026",
903
+ "A",
904
+ "E",
905
+ "I",
906
+ "N",
907
+ "O",
908
+ "Q",
909
+ "U",
910
+ "a",
911
+ "b",
912
+ "d",
913
+ "e",
914
+ "f",
915
+ "g",
916
+ "h",
917
+ "i",
918
+ "j",
919
+ "k",
920
+ "l",
921
+ "m",
922
+ "n",
923
+ "o",
924
+ "p",
925
+ "r",
926
+ "s",
927
+ "t",
928
+ "u",
929
+ "v",
930
+ "w",
931
+ "y",
932
+ "z",
933
+ "\u0283",
934
+ "\u02a7",
935
+ "\u02a6",
936
+ "\u026f",
937
+ "\u0279",
938
+ "\u0259",
939
+ "\u0265",
940
+ "\u207c",
941
+ "\u02b0",
942
+ "`",
943
+ "\u2192",
944
+ "\u2193",
945
+ "\u2191",
946
+ " "
947
+ ]
948
+ }
configs/config2.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 100,
4
+ "eval_interval": 500,
5
+ "seed": 109652,
6
+ "epochs": 20001,
7
+ "learning_rate": 0.00015,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 30,
14
+ "fp16_run": false,
15
+ "bf16_run": false,
16
+ "lr_decay": 0.999875,
17
+ "segment_size": 10240,
18
+ "init_lr_ratio": 1,
19
+ "warmup_epochs": 0,
20
+ "c_mel": 45,
21
+ "c_kl": 1.0,
22
+ "use_sr": true,
23
+ "max_speclen": 512,
24
+ "port": "8001",
25
+ "keep_ckpts": 3
26
+ },
27
+ "data": {
28
+ "training_files": "filelists/44k/train.txt",
29
+ "validation_files": "filelists/44k/val.txt",
30
+ "max_wav_value": 32768.0,
31
+ "sampling_rate": 44100,
32
+ "filter_length": 2048,
33
+ "hop_length": 512,
34
+ "win_length": 2048,
35
+ "n_mel_channels": 80,
36
+ "mel_fmin": 0.0,
37
+ "mel_fmax": 22050
38
+ },
39
+ "model": {
40
+ "inter_channels": 192,
41
+ "hidden_channels": 192,
42
+ "filter_channels": 768,
43
+ "n_heads": 2,
44
+ "n_layers": 6,
45
+ "kernel_size": 3,
46
+ "p_dropout": 0.1,
47
+ "resblock": "1",
48
+ "resblock_kernel_sizes": [
49
+ 3,
50
+ 7,
51
+ 11
52
+ ],
53
+ "resblock_dilation_sizes": [
54
+ [
55
+ 1,
56
+ 3,
57
+ 5
58
+ ],
59
+ [
60
+ 1,
61
+ 3,
62
+ 5
63
+ ],
64
+ [
65
+ 1,
66
+ 3,
67
+ 5
68
+ ]
69
+ ],
70
+ "upsample_rates": [
71
+ 8,
72
+ 8,
73
+ 2,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4,
83
+ 4
84
+ ],
85
+ "n_layers_q": 3,
86
+ "use_spectral_norm": false,
87
+ "gin_channels": 256,
88
+ "ssl_dim": 256,
89
+ "n_speakers": 200
90
+ },
91
+ "spk": {
92
+ "parappa": 0
93
+ }
94
+ }
data_utils.py ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+
8
+ import commons
9
+ from mel_processing import spectrogram_torch
10
+ from utils import load_wav_to_torch, load_filepaths_and_text
11
+ from text import text_to_sequence, cleaned_text_to_sequence
12
+
13
+
14
+ class TextAudioLoader(torch.utils.data.Dataset):
15
+ """
16
+ 1) loads audio, text pairs
17
+ 2) normalizes text and converts them to sequences of integers
18
+ 3) computes spectrograms from audio files.
19
+ """
20
+ def __init__(self, audiopaths_and_text, hparams):
21
+ self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
22
+ self.text_cleaners = hparams.text_cleaners
23
+ self.max_wav_value = hparams.max_wav_value
24
+ self.sampling_rate = hparams.sampling_rate
25
+ self.filter_length = hparams.filter_length
26
+ self.hop_length = hparams.hop_length
27
+ self.win_length = hparams.win_length
28
+ self.sampling_rate = hparams.sampling_rate
29
+
30
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
31
+
32
+ self.add_blank = hparams.add_blank
33
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
34
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
35
+
36
+ random.seed(1234)
37
+ random.shuffle(self.audiopaths_and_text)
38
+ self._filter()
39
+
40
+
41
+ def _filter(self):
42
+ """
43
+ Filter text & store spec lengths
44
+ """
45
+ # Store spectrogram lengths for Bucketing
46
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
47
+ # spec_length = wav_length // hop_length
48
+
49
+ audiopaths_and_text_new = []
50
+ lengths = []
51
+ for audiopath, text in self.audiopaths_and_text:
52
+ if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
53
+ audiopaths_and_text_new.append([audiopath, text])
54
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
55
+ self.audiopaths_and_text = audiopaths_and_text_new
56
+ self.lengths = lengths
57
+
58
+ def get_audio_text_pair(self, audiopath_and_text):
59
+ # separate filename and text
60
+ audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
61
+ text = self.get_text(text)
62
+ spec, wav = self.get_audio(audiopath)
63
+ return (text, spec, wav)
64
+
65
+ def get_audio(self, filename):
66
+ audio, sampling_rate = load_wav_to_torch(filename)
67
+ if sampling_rate != self.sampling_rate:
68
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
69
+ sampling_rate, self.sampling_rate))
70
+ audio_norm = audio / self.max_wav_value
71
+ audio_norm = audio_norm.unsqueeze(0)
72
+ spec_filename = filename.replace(".wav", ".spec.pt")
73
+ if os.path.exists(spec_filename):
74
+ spec = torch.load(spec_filename)
75
+ else:
76
+ spec = spectrogram_torch(audio_norm, self.filter_length,
77
+ self.sampling_rate, self.hop_length, self.win_length,
78
+ center=False)
79
+ spec = torch.squeeze(spec, 0)
80
+ torch.save(spec, spec_filename)
81
+ return spec, audio_norm
82
+
83
+ def get_text(self, text):
84
+ if self.cleaned_text:
85
+ text_norm = cleaned_text_to_sequence(text)
86
+ else:
87
+ text_norm = text_to_sequence(text, self.text_cleaners)
88
+ if self.add_blank:
89
+ text_norm = commons.intersperse(text_norm, 0)
90
+ text_norm = torch.LongTensor(text_norm)
91
+ return text_norm
92
+
93
+ def __getitem__(self, index):
94
+ return self.get_audio_text_pair(self.audiopaths_and_text[index])
95
+
96
+ def __len__(self):
97
+ return len(self.audiopaths_and_text)
98
+
99
+
100
+ class TextAudioCollate():
101
+ """ Zero-pads model inputs and targets
102
+ """
103
+ def __init__(self, return_ids=False):
104
+ self.return_ids = return_ids
105
+
106
+ def __call__(self, batch):
107
+ """Collate's training batch from normalized text and aduio
108
+ PARAMS
109
+ ------
110
+ batch: [text_normalized, spec_normalized, wav_normalized]
111
+ """
112
+ # Right zero-pad all one-hot text sequences to max input length
113
+ _, ids_sorted_decreasing = torch.sort(
114
+ torch.LongTensor([x[1].size(1) for x in batch]),
115
+ dim=0, descending=True)
116
+
117
+ max_text_len = max([len(x[0]) for x in batch])
118
+ max_spec_len = max([x[1].size(1) for x in batch])
119
+ max_wav_len = max([x[2].size(1) for x in batch])
120
+
121
+ text_lengths = torch.LongTensor(len(batch))
122
+ spec_lengths = torch.LongTensor(len(batch))
123
+ wav_lengths = torch.LongTensor(len(batch))
124
+
125
+ text_padded = torch.LongTensor(len(batch), max_text_len)
126
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
127
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
128
+ text_padded.zero_()
129
+ spec_padded.zero_()
130
+ wav_padded.zero_()
131
+ for i in range(len(ids_sorted_decreasing)):
132
+ row = batch[ids_sorted_decreasing[i]]
133
+
134
+ text = row[0]
135
+ text_padded[i, :text.size(0)] = text
136
+ text_lengths[i] = text.size(0)
137
+
138
+ spec = row[1]
139
+ spec_padded[i, :, :spec.size(1)] = spec
140
+ spec_lengths[i] = spec.size(1)
141
+
142
+ wav = row[2]
143
+ wav_padded[i, :, :wav.size(1)] = wav
144
+ wav_lengths[i] = wav.size(1)
145
+
146
+ if self.return_ids:
147
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
148
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
149
+
150
+
151
+ """Multi speaker version"""
152
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
153
+ """
154
+ 1) loads audio, speaker_id, text pairs
155
+ 2) normalizes text and converts them to sequences of integers
156
+ 3) computes spectrograms from audio files.
157
+ """
158
+ def __init__(self, audiopaths_sid_text, hparams):
159
+ self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
160
+ self.text_cleaners = hparams.text_cleaners
161
+ self.max_wav_value = hparams.max_wav_value
162
+ self.sampling_rate = hparams.sampling_rate
163
+ self.filter_length = hparams.filter_length
164
+ self.hop_length = hparams.hop_length
165
+ self.win_length = hparams.win_length
166
+ self.sampling_rate = hparams.sampling_rate
167
+
168
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
169
+
170
+ self.add_blank = hparams.add_blank
171
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
172
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
173
+
174
+ random.seed(1234)
175
+ random.shuffle(self.audiopaths_sid_text)
176
+ self._filter()
177
+
178
+ def _filter(self):
179
+ """
180
+ Filter text & store spec lengths
181
+ """
182
+ # Store spectrogram lengths for Bucketing
183
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
184
+ # spec_length = wav_length // hop_length
185
+
186
+ audiopaths_sid_text_new = []
187
+ lengths = []
188
+ for audiopath, sid, text in self.audiopaths_sid_text:
189
+ if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
190
+ audiopaths_sid_text_new.append([audiopath, sid, text])
191
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
192
+ self.audiopaths_sid_text = audiopaths_sid_text_new
193
+ self.lengths = lengths
194
+
195
+ def get_audio_text_speaker_pair(self, audiopath_sid_text):
196
+ # separate filename, speaker_id and text
197
+ audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
198
+ text = self.get_text(text)
199
+ spec, wav = self.get_audio(audiopath)
200
+ sid = self.get_sid(sid)
201
+ return (text, spec, wav, sid)
202
+
203
+ def get_audio(self, filename):
204
+ audio, sampling_rate = load_wav_to_torch(filename)
205
+ if sampling_rate != self.sampling_rate:
206
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
207
+ sampling_rate, self.sampling_rate))
208
+ audio_norm = audio / self.max_wav_value
209
+ audio_norm = audio_norm.unsqueeze(0)
210
+ spec_filename = filename.replace(".wav", ".spec.pt")
211
+ if os.path.exists(spec_filename):
212
+ spec = torch.load(spec_filename)
213
+ else:
214
+ spec = spectrogram_torch(audio_norm, self.filter_length,
215
+ self.sampling_rate, self.hop_length, self.win_length,
216
+ center=False)
217
+ spec = torch.squeeze(spec, 0)
218
+ torch.save(spec, spec_filename)
219
+ return spec, audio_norm
220
+
221
+ def get_text(self, text):
222
+ if self.cleaned_text:
223
+ text_norm = cleaned_text_to_sequence(text)
224
+ else:
225
+ text_norm = text_to_sequence(text, self.text_cleaners)
226
+ if self.add_blank:
227
+ text_norm = commons.intersperse(text_norm, 0)
228
+ text_norm = torch.LongTensor(text_norm)
229
+ return text_norm
230
+
231
+ def get_sid(self, sid):
232
+ sid = torch.LongTensor([int(sid)])
233
+ return sid
234
+
235
+ def __getitem__(self, index):
236
+ return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
237
+
238
+ def __len__(self):
239
+ return len(self.audiopaths_sid_text)
240
+
241
+
242
+ class TextAudioSpeakerCollate():
243
+ """ Zero-pads model inputs and targets
244
+ """
245
+ def __init__(self, return_ids=False):
246
+ self.return_ids = return_ids
247
+
248
+ def __call__(self, batch):
249
+ """Collate's training batch from normalized text, audio and speaker identities
250
+ PARAMS
251
+ ------
252
+ batch: [text_normalized, spec_normalized, wav_normalized, sid]
253
+ """
254
+ # Right zero-pad all one-hot text sequences to max input length
255
+ _, ids_sorted_decreasing = torch.sort(
256
+ torch.LongTensor([x[1].size(1) for x in batch]),
257
+ dim=0, descending=True)
258
+
259
+ max_text_len = max([len(x[0]) for x in batch])
260
+ max_spec_len = max([x[1].size(1) for x in batch])
261
+ max_wav_len = max([x[2].size(1) for x in batch])
262
+
263
+ text_lengths = torch.LongTensor(len(batch))
264
+ spec_lengths = torch.LongTensor(len(batch))
265
+ wav_lengths = torch.LongTensor(len(batch))
266
+ sid = torch.LongTensor(len(batch))
267
+
268
+ text_padded = torch.LongTensor(len(batch), max_text_len)
269
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
270
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
271
+ text_padded.zero_()
272
+ spec_padded.zero_()
273
+ wav_padded.zero_()
274
+ for i in range(len(ids_sorted_decreasing)):
275
+ row = batch[ids_sorted_decreasing[i]]
276
+
277
+ text = row[0]
278
+ text_padded[i, :text.size(0)] = text
279
+ text_lengths[i] = text.size(0)
280
+
281
+ spec = row[1]
282
+ spec_padded[i, :, :spec.size(1)] = spec
283
+ spec_lengths[i] = spec.size(1)
284
+
285
+ wav = row[2]
286
+ wav_padded[i, :, :wav.size(1)] = wav
287
+ wav_lengths[i] = wav.size(1)
288
+
289
+ sid[i] = row[3]
290
+
291
+ if self.return_ids:
292
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
293
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
294
+
295
+
296
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
297
+ """
298
+ Maintain similar input lengths in a batch.
299
+ Length groups are specified by boundaries.
300
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
301
+
302
+ It removes samples which are not included in the boundaries.
303
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
304
+ """
305
+ def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
306
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
307
+ self.lengths = dataset.lengths
308
+ self.batch_size = batch_size
309
+ self.boundaries = boundaries
310
+
311
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
312
+ self.total_size = sum(self.num_samples_per_bucket)
313
+ self.num_samples = self.total_size // self.num_replicas
314
+
315
+ def _create_buckets(self):
316
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
317
+ for i in range(len(self.lengths)):
318
+ length = self.lengths[i]
319
+ idx_bucket = self._bisect(length)
320
+ if idx_bucket != -1:
321
+ buckets[idx_bucket].append(i)
322
+
323
+ for i in range(len(buckets) - 1, 0, -1):
324
+ if len(buckets[i]) == 0:
325
+ buckets.pop(i)
326
+ self.boundaries.pop(i+1)
327
+
328
+ num_samples_per_bucket = []
329
+ for i in range(len(buckets)):
330
+ len_bucket = len(buckets[i])
331
+ total_batch_size = self.num_replicas * self.batch_size
332
+ rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
333
+ num_samples_per_bucket.append(len_bucket + rem)
334
+ return buckets, num_samples_per_bucket
335
+
336
+ def __iter__(self):
337
+ # deterministically shuffle based on epoch
338
+ g = torch.Generator()
339
+ g.manual_seed(self.epoch)
340
+
341
+ indices = []
342
+ if self.shuffle:
343
+ for bucket in self.buckets:
344
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
345
+ else:
346
+ for bucket in self.buckets:
347
+ indices.append(list(range(len(bucket))))
348
+
349
+ batches = []
350
+ for i in range(len(self.buckets)):
351
+ bucket = self.buckets[i]
352
+ len_bucket = len(bucket)
353
+ ids_bucket = indices[i]
354
+ num_samples_bucket = self.num_samples_per_bucket[i]
355
+
356
+ # add extra samples to make it evenly divisible
357
+ rem = num_samples_bucket - len_bucket
358
+ ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
359
+
360
+ # subsample
361
+ ids_bucket = ids_bucket[self.rank::self.num_replicas]
362
+
363
+ # batching
364
+ for j in range(len(ids_bucket) // self.batch_size):
365
+ batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
366
+ batches.append(batch)
367
+
368
+ if self.shuffle:
369
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
370
+ batches = [batches[i] for i in batch_ids]
371
+ self.batches = batches
372
+
373
+ assert len(self.batches) * self.batch_size == self.num_samples
374
+ return iter(self.batches)
375
+
376
+ def _bisect(self, x, lo=0, hi=None):
377
+ if hi is None:
378
+ hi = len(self.boundaries) - 1
379
+
380
+ if hi > lo:
381
+ mid = (hi + lo) // 2
382
+ if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
383
+ return mid
384
+ elif x <= self.boundaries[mid]:
385
+ return self._bisect(x, lo, mid)
386
+ else:
387
+ return self._bisect(x, mid + 1, hi)
388
+ else:
389
+ return -1
390
+
391
+ def __len__(self):
392
+ return self.num_samples // self.batch_size
filelists/yuuka_train.txt ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wavs/yuuka/1.wav|0|ブルーアーカイブ
2
+ wavs/yuuka/2.wav|0|条件はクリアされました
3
+ wavs/yuuka/3.wav|0|私たちは今日この瞬間は
4
+ wavs/yuuka/4.wav|0|証言することになるでしょう
5
+ wavs/yuuka/5.wav|0|今日も全力であなたをアシストしますね
6
+ wavs/yuuka/6.wav|0|ようこそ
7
+ wavs/yuuka/7.wav|0|先生
8
+ wavs/yuuka/8.wav|0|今から反省会を始めます
9
+ wavs/yuuka/9.wav|0|どこに行くんですか
10
+ wavs/yuuka/10.wav|0|先生
11
+ wavs/yuuka/11.wav|0|もう少し頑張って下さい
12
+ wavs/yuuka/12.wav|0|今
13
+ wavs/yuuka/13.wav|0|先生の行動について言いたいことが
14
+ wavs/yuuka/14.wav|0|そのうちのひとつは
15
+ wavs/yuuka/15.wav|0|特別な言葉だけど
16
+ wavs/yuuka/16.wav|0|でも最近は
17
+ wavs/yuuka/17.wav|0|先生らしくなった気がします
18
+ wavs/yuuka/18.wav|0|私のおかげ
19
+ wavs/yuuka/19.wav|0|これからの目標と
20
+ wavs/yuuka/20.wav|0|方向性を測定してください
21
+ wavs/yuuka/21.wav|0|バカ
22
+ wavs/yuuka/22.wav|0|大人なんですからしっかりと大人らしく
23
+ wavs/yuuka/23.wav|0|計画的な消費をしてください
24
+ wavs/yuuka/24.wav|0|お小遣いをもらって
25
+ wavs/yuuka/25.wav|0|次はもう
26
+ wavs/yuuka/26.wav|0|コンビニで購入した
27
+ wavs/yuuka/27.wav|0|新刊の漫画購入で
28
+ wavs/yuuka/28.wav|0|おとといの夜
29
+ wavs/yuuka/29.wav|0|生徒たちの模範となるべき教育者だ
30
+ wavs/yuuka/30.wav|0|信じられません
31
+ wavs/yuuka/31.wav|0|最低です
32
+ wavs/yuuka/32.wav|0|薬っていう名前の
33
+ wavs/yuuka/48.wav|0|買わなきゃ
34
+ wavs/yuuka/49.wav|0|体力も時間も
35
+ wavs/yuuka/50.wav|0|たくさん使っちゃった気がしますけど
36
+ wavs/yuuka/51.wav|0|先生といると
37
+ wavs/yuuka/52.wav|0|得した気分
38
+ wavs/yuuka/53.wav|0|計算ができません
39
+ wavs/yuuka/54.wav|0|この気持ちがですよ
40
+ wavs/yuuka/55.wav|0|計算だけを考えてたけど
41
+ wavs/yuuka/56.wav|0|今は
42
+ wavs/yuuka/57.wav|0|ただこの瞬間を感じていたい
43
+ wavs/yuuka/58.wav|0|説明できない感覚だけど
44
+ wavs/yuuka/59.wav|0|嫌いじゃない
45
+ wavs/yuuka/60.wav|0|合理的な選択ね
46
+ wavs/yuuka/61.wav|0|報酬は出るんです
47
+ wavs/yuuka/62.wav|0|やっぱり先生は賢いですね
48
+ wavs/yuuka/63.wav|0|敵の位置を確認
49
+ wavs/yuuka/64.wav|0|敵の位置を確認
50
+ wavs/yuuka/65.wav|0|チキン
51
+ wavs/yuuka/66.wav|0|権力
52
+ wavs/yuuka/67.wav|0|まだ終わらないわよ
53
+ wavs/yuuka/68.wav|0|彼は立つね
54
+ wavs/yuuka/69.wav|0|攻撃が私に命中する確率は
55
+ wavs/yuuka/70.wav|0|極めて低い
56
+ wavs/yuuka/71.wav|0|単なる計算結果にすぎないわ
57
+ wavs/yuuka/72.wav|0|勝利は
58
+ wavs/yuuka/73.wav|0|証明する
59
+ wavs/yuuka/74.wav|0|計算の完璧
60
+ wavs/yuuka/75.wav|0|落ち着いていこう
61
+ wavs/yuuka/76.wav|0|私たちの勝率はかなり高い
62
+ wavs/yuuka/77.wav|0|ありがとう
63
+ wavs/yuuka/78.wav|0|私の計算は完璧よ
64
+ wavs/yuuka/79.wav|0|隠れるは
65
+ wavs/yuuka/80.wav|0|支援をお願い
66
+ wavs/yuuka/81.wav|0|無駄よ
67
+ wavs/yuuka/82.wav|0|ここまでは計算どおりね
68
+ wavs/yuuka/83.wav|0|計算が合っていれば
69
+ wavs/yuuka/84.wav|0|すぐに次の目標が見えてくるはず
70
+ wavs/yuuka/85.wav|0|ちょうどいいよね
71
+ wavs/yuuka/86.wav|0|陣痛が
72
+ wavs/yuuka/87.wav|0|大杉
73
+ wavs/yuuka/88.wav|0|行くわよ
74
+ wavs/yuuka/89.wav|0|計算通り
75
+ wavs/yuuka/90.wav|0|岸壁
76
+ wavs/yuuka/91.wav|0|数学が真実を導く
77
+ wavs/yuuka/92.wav|0|たかちよ
78
+ wavs/yuuka/93.wav|0|スマートに調理
79
+ wavs/yuuka/94.wav|0|運が良かった
80
+ wavs/yuuka/95.wav|0|いいね
81
+ wavs/yuuka/96.wav|0|計算通りです
82
+ wavs/yuuka/97.wav|0|設計の方が間違ってましたから
83
+ wavs/yuuka/98.wav|0|計算機が
84
+ wavs/yuuka/99.wav|0|故障していたとは
85
+ wavs/yuuka/100.wav|0|背中を見せるチャンス
86
+ wavs/yuuka/101.wav|0|待ってました
87
+ wavs/yuuka/102.wav|0|周知で感じられる結果というのは
88
+ wavs/yuuka/103.wav|0|人をドキドキさせますね
89
+ wavs/yuuka/104.wav|0|次の任務は
90
+ wavs/yuuka/105.wav|0|切れ痔を鍛えてくださいね
91
+ wavs/yuuka/106.wav|0|こんな表現は
92
+ wavs/yuuka/107.wav|0|あまり好きじゃないけど
93
+ wavs/yuuka/108.wav|0|今の私
94
+ wavs/yuuka/109.wav|0|測定不能です
95
+ wavs/yuuka/110.wav|0|これは
96
+ wavs/yuuka/111.wav|0|ものすごいプラスになるやつだ
97
+ wavs/yuuka/112.wav|0|今日は私の誕生日です
98
+ wavs/yuuka/113.wav|0|プレゼントは私が選びますね
99
+ wavs/yuuka/114.wav|0|出かけませんか
100
+ wavs/yuuka/115.wav|0|高いものじゃなくてもいいので
101
+ wavs/yuuka/116.wav|0|今日で先生が生まれたからやっくん
102
+ wavs/yuuka/117.wav|0|学園都市の人口に比例してみると
103
+ wavs/yuuka/118.wav|0|数学でも
104
+ wavs/yuuka/119.wav|0|初めが肝心です
105
+ wavs/yuuka/120.wav|0|今年の始まりは
106
+ wavs/yuuka/121.wav|0|一緒に始めましょうか
107
+ wavs/yuuka/122.wav|0|今は先生がいてくれて
108
+ wavs/yuuka/123.wav|0|楽しいですね
filelists/yuuka_train.txt.cleaned ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wavs/yuuka/1.wav|0|bɯ↑rɯɯaaka↓ibɯ.
2
+ wavs/yuuka/2.wav|0|jo↑oke↓Nwa kɯ↑ri↓a sa↑rema↓ʃIta.
3
+ wavs/yuuka/3.wav|0|wa↑taʃi↓taʧiwa kyo↓o ko↑no ʃɯ↑NkaNwa.
4
+ wavs/yuuka/4.wav|0|ʃo↑ogeN sɯ↑rɯ ko↑to↓ni na↓rɯdeʃoo.
5
+ wavs/yuuka/5.wav|0|kyo↓omo ze↑Nryokɯde a↑na↓tao a↑ʃi↓sUto ʃi↑ma↓sUne.
6
+ wavs/yuuka/6.wav|0|yo↓okoso.
7
+ wavs/yuuka/7.wav|0|se↑Nse↓e.
8
+ wavs/yuuka/8.wav|0|i↓makara ha↑Nsee↓kaio ha↑jimema↓sU.
9
+ wavs/yuuka/9.wav|0|do↓koni i↑kɯ N↓desUka.
10
+ wavs/yuuka/10.wav|0|se↑Nse↓e.
11
+ wavs/yuuka/11.wav|0|mo↑osUko↓ʃi ga↑Nba↓Qte kɯ↑dasa↓i.
12
+ wavs/yuuka/12.wav|0|i↓ma.
13
+ wavs/yuuka/13.wav|0|se↑Nse↓eno ko↑odooni ʦɯ↓ite i↑ita↓i ko↑to↓ga.
14
+ wavs/yuuka/14.wav|0|so↑no ɯ↑ʧino hI↑to↓ʦɯwa.
15
+ wavs/yuuka/15.wav|0|to↑kɯbeʦɯna ko↑toba↓dakedo.
16
+ wavs/yuuka/16.wav|0|de↓mo sa↑ikiNwa.
17
+ wavs/yuuka/17.wav|0|se↑Nseeraʃi↓kɯ na↓Qta ki↑ga ʃi↑ma↓sU.
18
+ wavs/yuuka/18.wav|0|wa↑taʃino o↑kage.
19
+ wavs/yuuka/19.wav|0|ko↑rekarano mo↑kUhyooto.
20
+ wavs/yuuka/20.wav|0|ho↑okooseeo so↑kUtee ʃI↑te kɯ↑dasa↓i.
21
+ wavs/yuuka/21.wav|0|ba↓ka.
22
+ wavs/yuuka/22.wav|0|o↑tonana N↓desUkara ʃi↑Qka↓rito o↑tonaraʃi↓kɯ.
23
+ wavs/yuuka/23.wav|0|ke↑ekakɯ↓tekina ʃo↑ohio ʃI↑te kɯ↑dasa↓i.
24
+ wavs/yuuka/24.wav|0|o↑ko↓zɯkaio mo↑raQte.
25
+ wavs/yuuka/25.wav|0|ʦɯ↑gi↓wa mo↓o.
26
+ wavs/yuuka/26.wav|0|ko↑Nbinide ko↑onyɯɯ ʃI↑ta.
27
+ wavs/yuuka/27.wav|0|ʃi↑NkaNno ma↑Ngako↓onyɯɯde.
28
+ wavs/yuuka/28.wav|0|o↑toto↓ino yo↓rɯ.
29
+ wavs/yuuka/29.wav|0|se↑eto↓taʧino mo↑haNto na↓rɯbekI kyo↑oikUʃada.
30
+ wavs/yuuka/30.wav|0|ʃi↑Njiraremase↓N.
31
+ wavs/yuuka/31.wav|0|sa↑iteede↓sU.
32
+ wavs/yuuka/32.wav|0|kU↑sɯriQte i↓ɯ na↑maeno.
33
+ wavs/yuuka/48.wav|0|ka↑wanakya.
34
+ wavs/yuuka/49.wav|0|ta↓iryokɯmo ji↑kaNmo.
35
+ wavs/yuuka/50.wav|0|ta↑kUsaN ʦU↑kaQʧaQta ki↑ga ʃi↑ma↓sUkedo.
36
+ wavs/yuuka/51.wav|0|se↑Nse↓eto i↑rɯto.
37
+ wavs/yuuka/52.wav|0|to↑kɯ ʃI↑ta ki↓bɯN.
38
+ wavs/yuuka/53.wav|0|ke↑esaNga de↑kimase↓N.
39
+ wavs/yuuka/54.wav|0|ko↑no ki↑moʧigadesUyo.
40
+ wavs/yuuka/55.wav|0|ke↑esaNdakeo ka↑Nga↓etetakedo.
41
+ wavs/yuuka/56.wav|0|i↓mawa.
42
+ wavs/yuuka/57.wav|0|ta↓da ko↑no ʃɯ↑NkaNo ka↑Njite i↑ta↓i.
43
+ wavs/yuuka/58.wav|0|se↑ʦɯmee de↑ki↓nai ka↑Nkakɯda↓kedo.
44
+ wavs/yuuka/59.wav|0|ki↑raijanai.
45
+ wavs/yuuka/60.wav|0|go↑ori↓tekina se↑Ntakɯne.
46
+ wavs/yuuka/61.wav|0|ho↑oʃɯɯwa de↓rɯ N↓desU.
47
+ wavs/yuuka/62.wav|0|ya↑Qpa↓ri se↑Nse↓ewa ka↑ʃIko↓idesUne.
48
+ wavs/yuuka/63.wav|0|te↑kino i↓ʧio ka↑kɯniN.
49
+ wavs/yuuka/64.wav|0|te↑kino i↓ʧio ka↑kɯniN.
50
+ wavs/yuuka/65.wav|0|ʧi↓kiN.
51
+ wavs/yuuka/66.wav|0|ke↓Nryokɯ.
52
+ wavs/yuuka/67.wav|0|ma↓da o↑waranai↓wayo.
53
+ wavs/yuuka/68.wav|0|ka↓rewa ta↓ʦɯne.
54
+ wavs/yuuka/69.wav|0|ko↑ogekiga wa↑taʃini me↑eʧɯɯ sɯ↑rɯ ka↑kɯriʦɯwa.
55
+ wavs/yuuka/70.wav|0|ki↑wa↓mete hI↑kɯ↓i.
56
+ wavs/yuuka/71.wav|0|ta↓Nnarɯ ke↑esaN ke↑Qkani sɯ↑gi↓naiwa.
57
+ wavs/yuuka/72.wav|0|ʃo↓oriwa.
58
+ wavs/yuuka/73.wav|0|ʃo↑omee sɯ↑rɯ.
59
+ wavs/yuuka/74.wav|0|ke↑esaNno ka↑Npeki.
60
+ wavs/yuuka/75.wav|0|o↑ʧIʦɯite i↑koo.
61
+ wavs/yuuka/76.wav|0|wa↑taʃi↓taʧino ʃo↑oriʦɯwa ka↓nari ta↑ka↓i.
62
+ wavs/yuuka/77.wav|0|a↑ri↓gatoo.
63
+ wavs/yuuka/78.wav|0|wa↑taʃino ke↑esaNwa ka↑Npekiyo.
64
+ wavs/yuuka/79.wav|0|ka↑kɯre↓rɯwa.
65
+ wavs/yuuka/80.wav|0|ʃi↑eNo o↑negai.
66
+ wavs/yuuka/81.wav|0|mɯ↑dayo.
67
+ wavs/yuuka/82.wav|0|ko↑koma↓dewa ke↑esaN↓doorine.
68
+ wavs/yuuka/83.wav|0|ke↑esaNga a↓Qte i↑re↓ba.
69
+ wavs/yuuka/84.wav|0|sɯ↓gɯni ʦɯ↑gi↓no mo↑kUhyooga mi↑e↓te kɯ↓rɯ ha↑zɯ.
70
+ wavs/yuuka/85.wav|0|ʧo↑odo i↓iyone.
71
+ wavs/yuuka/86.wav|0|ji↑Nʦɯɯga.
72
+ wavs/yuuka/87.wav|0|o↑osɯgi.
73
+ wavs/yuuka/88.wav|0|i↑kɯ↓wayo.
74
+ wavs/yuuka/89.wav|0|ke↑esaNdo↓ori.
75
+ wavs/yuuka/90.wav|0|ga↑Npeki.
76
+ wavs/yuuka/91.wav|0|sɯ↑ɯgakɯga ʃi↓Njiʦɯo mi↑ʧibi↓kɯ.
77
+ wavs/yuuka/92.wav|0|t a ka↓ʧiyo.
78
+ wavs/yuuka/93.wav|0|sɯ↑ma↓atoni ʧo↓ori.
79
+ wavs/yuuka/94.wav|0|ɯ↓Nga yo↓kaQta.
80
+ wavs/yuuka/95.wav|0|i↓ine.
81
+ wavs/yuuka/96.wav|0|ke↑esaNdo↓oridesU.
82
+ wavs/yuuka/97.wav|0|se↑Qkeeno ho↓oga ma↑ʧiga↓QtemaʃItakara.
83
+ wavs/yuuka/98.wav|0|ke↑esaN↓kiga.
84
+ wavs/yuuka/99.wav|0|ko↑ʃoo ʃI↑te i↑ta↓towa.
85
+ wavs/yuuka/100.wav|0|se↑nakao mi↑se↓rɯ ʧa↓Nsɯ.
86
+ wavs/yuuka/101.wav|0|ma↓QtemaʃIta.
87
+ wavs/yuuka/102.wav|0|ʃɯ↓ɯʧide ka↑Njirarerɯ ke↑Qkato i↑ɯ no↑wa.
88
+ wavs/yuuka/103.wav|0|hI↑too do↓kidokI sa↑sema↓sUne.
89
+ wavs/yuuka/104.wav|0|ʦɯ↑gi↓no ni↓Nmɯwa.
90
+ wavs/yuuka/105.wav|0|ki↑re↓jio kI↑tae↓te kɯ↑dasa↓ine.
91
+ wavs/yuuka/106.wav|0|ko↑Nna hyo↑oge↓Nwa.
92
+ wavs/yuuka/107.wav|0|a↑mari sU↑ki↓janaikedo.
93
+ wavs/yuuka/108.wav|0|i↓mano wa↑taʃi.
94
+ wavs/yuuka/109.wav|0|so↑kUtee fɯ↑noode↓sU.
95
+ wavs/yuuka/110.wav|0|ko↑rewa.
96
+ wavs/yuuka/111.wav|0|mo↑nosɯgo↓i pɯ↑rasɯni na↓rɯ ya↓ʦɯda.
97
+ wavs/yuuka/112.wav|0|kyo↓owa wa↑taʃino ta↑Njoo↓bidesU.
98
+ wavs/yuuka/113.wav|0|pɯ↑re↓zeNtowa wa↑taʃiga e↑rabima↓sUne.
99
+ wavs/yuuka/114.wav|0|de↑kakemase↓Nka.
100
+ wavs/yuuka/115.wav|0|ta↑ka↓i mo↑no↓janakUtemo i↓inode.
101
+ wavs/yuuka/116.wav|0|kyo↓ode se↑Nse↓ega ɯ↑mareta↓kara ya↓QkɯN.
102
+ wavs/yuuka/117.wav|0|ga↑kɯeN↓toʃino ji↑Nkooni hi↑ree ʃI↑te mi↓rɯto.
103
+ wavs/yuuka/118.wav|0|sɯ↑ɯgakɯdemo.
104
+ wavs/yuuka/119.wav|0|ha↑jimega ka↑NjiNde↓sU.
105
+ wavs/yuuka/120.wav|0|ko↑toʃino ha↑jimariwa.
106
+ wavs/yuuka/121.wav|0|i↑Qʃoni ha↑jimemaʃo↓oka.
107
+ wavs/yuuka/122.wav|0|i↓mawa se↑Nse↓ega i↑te kɯ↑rete.
108
+ wavs/yuuka/123.wav|0|ta↑noʃi↓idesUne.
filelists/yuuka_val.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wavs/yuuka/33.wav|0|スマホゲームのガチャ
2
+ wavs/yuuka/34.wav|0|切り戻し
3
+ wavs/yuuka/35.wav|0|それでも
4
+ wavs/yuuka/36.wav|0|衝動買いは禁止
5
+ wavs/yuuka/37.wav|0|消費はちゃんと
6
+ wavs/yuuka/38.wav|0|計画的に
7
+ wavs/yuuka/39.wav|0|少し休んで行きますか
8
+ wavs/yuuka/40.wav|0|私も
9
+ wavs/yuuka/41.wav|0|なんだか今日は
10
+ wavs/yuuka/42.wav|0|楽しいことがありそうな気がする
11
+ wavs/yuuka/43.wav|0|確率的に
12
+ wavs/yuuka/44.wav|0|このままだと破産する
13
+ wavs/yuuka/45.wav|0|出勤を減らさないと
14
+ wavs/yuuka/46.wav|0|もしこれを購入したら
15
+ wavs/yuuka/47.wav|0|それは辛いけど
filelists/yuuka_val.txt.cleaned ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wavs/yuuka/33.wav|0|sɯ↑mahoge↓emɯno ga↓ʧa.
2
+ wavs/yuuka/34.wav|0|ki↑rimodo↓ʃi.
3
+ wavs/yuuka/35.wav|0|so↑rede↓mo.
4
+ wavs/yuuka/36.wav|0|ʃo↑odoogaiwa ki↑Nʃi.
5
+ wavs/yuuka/37.wav|0|ʃo↑ohiwa ʧa↑Nto.
6
+ wavs/yuuka/38.wav|0|ke↑ekakɯ↓tekini.
7
+ wavs/yuuka/39.wav|0|sU↑ko↓ʃi ya↑sɯ↓Nde i↑kima↓sUka.
8
+ wavs/yuuka/40.wav|0|wa↑taʃimo.
9
+ wavs/yuuka/41.wav|0|na↓Ndaka kyo↓owa.
10
+ wavs/yuuka/42.wav|0|ta↑noʃi↓i ko↑to↓ga a↑ri↓soona ki↑ga sɯ↑rɯ.
11
+ wavs/yuuka/43.wav|0|ka↑kɯriʦɯ↓tekini.
12
+ wavs/yuuka/44.wav|0|ko↑no ma↑ma↓dato ha↑saN sɯ↑rɯ.
13
+ wavs/yuuka/45.wav|0|ʃɯ↑QkiNo he↑rasanaito.
14
+ wavs/yuuka/46.wav|0|mo↓ʃI ko↑reo ko↑onyɯɯ ʃI↑ta↓ra.
15
+ wavs/yuuka/47.wav|0|so↑rewa ʦɯ↑ra↓ikedo.
inference.ipynb ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "pycharm": {
8
+ "name": "#%%\n"
9
+ }
10
+ },
11
+ "outputs": [],
12
+ "source": [
13
+ "%matplotlib inline\n",
14
+ "import matplotlib.pyplot as plt\n",
15
+ "import IPython.display as ipd\n",
16
+ "\n",
17
+ "import os\n",
18
+ "import json\n",
19
+ "import math\n",
20
+ "import torch\n",
21
+ "from torch import nn\n",
22
+ "from torch.nn import functional as F\n",
23
+ "from torch.utils.data import DataLoader\n",
24
+ "\n",
25
+ "import commons\n",
26
+ "import utils\n",
27
+ "from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
28
+ "from models import SynthesizerTrn\n",
29
+ "from text.symbols import symbols\n",
30
+ "from text import text_to_sequence\n",
31
+ "\n",
32
+ "from scipy.io.wavfile import write\n",
33
+ "\n",
34
+ "\n",
35
+ "def get_text(text, hps):\n",
36
+ " text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
37
+ " if hps.data.add_blank:\n",
38
+ " text_norm = commons.intersperse(text_norm, 0)\n",
39
+ " text_norm = torch.LongTensor(text_norm)\n",
40
+ " return text_norm"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "markdown",
45
+ "metadata": {
46
+ "pycharm": {
47
+ "name": "#%% md\n"
48
+ }
49
+ },
50
+ "source": [
51
+ "## Single Speaker"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": null,
57
+ "metadata": {
58
+ "pycharm": {
59
+ "name": "#%%\n"
60
+ }
61
+ },
62
+ "outputs": [],
63
+ "source": [
64
+ "hps = utils.get_hparams_from_file(\"configs/XXX.json\")"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": null,
70
+ "metadata": {
71
+ "pycharm": {
72
+ "name": "#%%\n"
73
+ }
74
+ },
75
+ "outputs": [],
76
+ "source": [
77
+ "net_g = SynthesizerTrn(\n",
78
+ " len(symbols),\n",
79
+ " hps.data.filter_length // 2 + 1,\n",
80
+ " hps.train.segment_size // hps.data.hop_length,\n",
81
+ " **hps.model).cuda()\n",
82
+ "_ = net_g.eval()\n",
83
+ "\n",
84
+ "_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": null,
90
+ "metadata": {
91
+ "pycharm": {
92
+ "name": "#%%\n"
93
+ }
94
+ },
95
+ "outputs": [],
96
+ "source": [
97
+ "stn_tst = get_text(\"こんにちは\", hps)\n",
98
+ "with torch.no_grad():\n",
99
+ " x_tst = stn_tst.cuda().unsqueeze(0)\n",
100
+ " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
101
+ " audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
102
+ "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "markdown",
107
+ "metadata": {
108
+ "pycharm": {
109
+ "name": "#%% md\n"
110
+ }
111
+ },
112
+ "source": [
113
+ "## Multiple Speakers"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "metadata": {
120
+ "pycharm": {
121
+ "name": "#%%\n"
122
+ }
123
+ },
124
+ "outputs": [],
125
+ "source": [
126
+ "hps = utils.get_hparams_from_file(\"./configs/XXX.json\")"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": null,
132
+ "metadata": {
133
+ "pycharm": {
134
+ "name": "#%%\n"
135
+ }
136
+ },
137
+ "outputs": [],
138
+ "source": [
139
+ "net_g = SynthesizerTrn(\n",
140
+ " len(symbols),\n",
141
+ " hps.data.filter_length // 2 + 1,\n",
142
+ " hps.train.segment_size // hps.data.hop_length,\n",
143
+ " n_speakers=hps.data.n_speakers,\n",
144
+ " **hps.model).cuda()\n",
145
+ "_ = net_g.eval()\n",
146
+ "\n",
147
+ "_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "metadata": {
154
+ "pycharm": {
155
+ "name": "#%%\n"
156
+ }
157
+ },
158
+ "outputs": [],
159
+ "source": [
160
+ "stn_tst = get_text(\"こんにちは\", hps)\n",
161
+ "with torch.no_grad():\n",
162
+ " x_tst = stn_tst.cuda().unsqueeze(0)\n",
163
+ " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
164
+ " sid = torch.LongTensor([4]).cuda()\n",
165
+ " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
166
+ "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "markdown",
171
+ "metadata": {
172
+ "pycharm": {
173
+ "name": "#%% md\n"
174
+ }
175
+ },
176
+ "source": [
177
+ "### Voice Conversion"
178
+ ]
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": null,
183
+ "metadata": {
184
+ "pycharm": {
185
+ "name": "#%%\n"
186
+ }
187
+ },
188
+ "outputs": [],
189
+ "source": [
190
+ "dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)\n",
191
+ "collate_fn = TextAudioSpeakerCollate()\n",
192
+ "loader = DataLoader(dataset, num_workers=8, shuffle=False,\n",
193
+ " batch_size=1, pin_memory=True,\n",
194
+ " drop_last=True, collate_fn=collate_fn)\n",
195
+ "data_list = list(loader)"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": null,
201
+ "metadata": {
202
+ "pycharm": {
203
+ "name": "#%%\n"
204
+ }
205
+ },
206
+ "outputs": [],
207
+ "source": [
208
+ "with torch.no_grad():\n",
209
+ " x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda() for x in data_list[0]]\n",
210
+ " sid_tgt1 = torch.LongTensor([1]).cuda()\n",
211
+ " sid_tgt2 = torch.LongTensor([2]).cuda()\n",
212
+ " sid_tgt3 = torch.LongTensor([4]).cuda()\n",
213
+ " audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data.cpu().float().numpy()\n",
214
+ " audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0,0].data.cpu().float().numpy()\n",
215
+ " audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0,0].data.cpu().float().numpy()\n",
216
+ "print(\"Original SID: %d\" % sid_src.item())\n",
217
+ "ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))\n",
218
+ "print(\"Converted SID: %d\" % sid_tgt1.item())\n",
219
+ "ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))\n",
220
+ "print(\"Converted SID: %d\" % sid_tgt2.item())\n",
221
+ "ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))\n",
222
+ "print(\"Converted SID: %d\" % sid_tgt3.item())\n",
223
+ "ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))"
224
+ ]
225
+ }
226
+ ],
227
+ "metadata": {
228
+ "kernelspec": {
229
+ "display_name": "Python 3.7.9 64-bit",
230
+ "language": "python",
231
+ "name": "python3"
232
+ },
233
+ "language_info": {
234
+ "codemirror_mode": {
235
+ "name": "ipython",
236
+ "version": 3
237
+ },
238
+ "file_extension": ".py",
239
+ "mimetype": "text/x-python",
240
+ "name": "python",
241
+ "nbconvert_exporter": "python",
242
+ "pygments_lexer": "ipython3",
243
+ "version": "3.7.9"
244
+ },
245
+ "vscode": {
246
+ "interpreter": {
247
+ "hash": "c15292341d300295ca9f634d04c483f667a0c1d5ee0c309c2ac4e312cce8b8df"
248
+ }
249
+ }
250
+ },
251
+ "nbformat": 4,
252
+ "nbformat_minor": 4
253
+ }
losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
models.py ADDED
@@ -0,0 +1,534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ import modules
9
+ import attentions
10
+ import monotonic_align
11
+
12
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+ from commons import init_weights, get_padding
15
+
16
+
17
+ class StochasticDurationPredictor(nn.Module):
18
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
19
+ super().__init__()
20
+ filter_channels = in_channels # it needs to be removed from future version.
21
+ self.in_channels = in_channels
22
+ self.filter_channels = filter_channels
23
+ self.kernel_size = kernel_size
24
+ self.p_dropout = p_dropout
25
+ self.n_flows = n_flows
26
+ self.gin_channels = gin_channels
27
+
28
+ self.log_flow = modules.Log()
29
+ self.flows = nn.ModuleList()
30
+ self.flows.append(modules.ElementwiseAffine(2))
31
+ for i in range(n_flows):
32
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
33
+ self.flows.append(modules.Flip())
34
+
35
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
36
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
37
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
38
+ self.post_flows = nn.ModuleList()
39
+ self.post_flows.append(modules.ElementwiseAffine(2))
40
+ for i in range(4):
41
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
42
+ self.post_flows.append(modules.Flip())
43
+
44
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
45
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
46
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
47
+ if gin_channels != 0:
48
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
49
+
50
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
51
+ x = torch.detach(x)
52
+ x = self.pre(x)
53
+ if g is not None:
54
+ g = torch.detach(g)
55
+ x = x + self.cond(g)
56
+ x = self.convs(x, x_mask)
57
+ x = self.proj(x) * x_mask
58
+
59
+ if not reverse:
60
+ flows = self.flows
61
+ assert w is not None
62
+
63
+ logdet_tot_q = 0
64
+ h_w = self.post_pre(w)
65
+ h_w = self.post_convs(h_w, x_mask)
66
+ h_w = self.post_proj(h_w) * x_mask
67
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
68
+ z_q = e_q
69
+ for flow in self.post_flows:
70
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
71
+ logdet_tot_q += logdet_q
72
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
73
+ u = torch.sigmoid(z_u) * x_mask
74
+ z0 = (w - u) * x_mask
75
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
76
+ logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
77
+
78
+ logdet_tot = 0
79
+ z0, logdet = self.log_flow(z0, x_mask)
80
+ logdet_tot += logdet
81
+ z = torch.cat([z0, z1], 1)
82
+ for flow in flows:
83
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
84
+ logdet_tot = logdet_tot + logdet
85
+ nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
86
+ return nll + logq # [b]
87
+ else:
88
+ flows = list(reversed(self.flows))
89
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
90
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
91
+ for flow in flows:
92
+ z = flow(z, x_mask, g=x, reverse=reverse)
93
+ z0, z1 = torch.split(z, [1, 1], 1)
94
+ logw = z0
95
+ return logw
96
+
97
+
98
+ class DurationPredictor(nn.Module):
99
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
100
+ super().__init__()
101
+
102
+ self.in_channels = in_channels
103
+ self.filter_channels = filter_channels
104
+ self.kernel_size = kernel_size
105
+ self.p_dropout = p_dropout
106
+ self.gin_channels = gin_channels
107
+
108
+ self.drop = nn.Dropout(p_dropout)
109
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
110
+ self.norm_1 = modules.LayerNorm(filter_channels)
111
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
112
+ self.norm_2 = modules.LayerNorm(filter_channels)
113
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
114
+
115
+ if gin_channels != 0:
116
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
117
+
118
+ def forward(self, x, x_mask, g=None):
119
+ x = torch.detach(x)
120
+ if g is not None:
121
+ g = torch.detach(g)
122
+ x = x + self.cond(g)
123
+ x = self.conv_1(x * x_mask)
124
+ x = torch.relu(x)
125
+ x = self.norm_1(x)
126
+ x = self.drop(x)
127
+ x = self.conv_2(x * x_mask)
128
+ x = torch.relu(x)
129
+ x = self.norm_2(x)
130
+ x = self.drop(x)
131
+ x = self.proj(x * x_mask)
132
+ return x * x_mask
133
+
134
+
135
+ class TextEncoder(nn.Module):
136
+ def __init__(self,
137
+ n_vocab,
138
+ out_channels,
139
+ hidden_channels,
140
+ filter_channels,
141
+ n_heads,
142
+ n_layers,
143
+ kernel_size,
144
+ p_dropout):
145
+ super().__init__()
146
+ self.n_vocab = n_vocab
147
+ self.out_channels = out_channels
148
+ self.hidden_channels = hidden_channels
149
+ self.filter_channels = filter_channels
150
+ self.n_heads = n_heads
151
+ self.n_layers = n_layers
152
+ self.kernel_size = kernel_size
153
+ self.p_dropout = p_dropout
154
+
155
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
156
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
157
+
158
+ self.encoder = attentions.Encoder(
159
+ hidden_channels,
160
+ filter_channels,
161
+ n_heads,
162
+ n_layers,
163
+ kernel_size,
164
+ p_dropout)
165
+ self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
166
+
167
+ def forward(self, x, x_lengths):
168
+ x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
169
+ x = torch.transpose(x, 1, -1) # [b, h, t]
170
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
171
+
172
+ x = self.encoder(x * x_mask, x_mask)
173
+ stats = self.proj(x) * x_mask
174
+
175
+ m, logs = torch.split(stats, self.out_channels, dim=1)
176
+ return x, m, logs, x_mask
177
+
178
+
179
+ class ResidualCouplingBlock(nn.Module):
180
+ def __init__(self,
181
+ channels,
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ n_flows=4,
187
+ gin_channels=0):
188
+ super().__init__()
189
+ self.channels = channels
190
+ self.hidden_channels = hidden_channels
191
+ self.kernel_size = kernel_size
192
+ self.dilation_rate = dilation_rate
193
+ self.n_layers = n_layers
194
+ self.n_flows = n_flows
195
+ self.gin_channels = gin_channels
196
+
197
+ self.flows = nn.ModuleList()
198
+ for i in range(n_flows):
199
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
200
+ self.flows.append(modules.Flip())
201
+
202
+ def forward(self, x, x_mask, g=None, reverse=False):
203
+ if not reverse:
204
+ for flow in self.flows:
205
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
206
+ else:
207
+ for flow in reversed(self.flows):
208
+ x = flow(x, x_mask, g=g, reverse=reverse)
209
+ return x
210
+
211
+
212
+ class PosteriorEncoder(nn.Module):
213
+ def __init__(self,
214
+ in_channels,
215
+ out_channels,
216
+ hidden_channels,
217
+ kernel_size,
218
+ dilation_rate,
219
+ n_layers,
220
+ gin_channels=0):
221
+ super().__init__()
222
+ self.in_channels = in_channels
223
+ self.out_channels = out_channels
224
+ self.hidden_channels = hidden_channels
225
+ self.kernel_size = kernel_size
226
+ self.dilation_rate = dilation_rate
227
+ self.n_layers = n_layers
228
+ self.gin_channels = gin_channels
229
+
230
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
231
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
232
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
233
+
234
+ def forward(self, x, x_lengths, g=None):
235
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
236
+ x = self.pre(x) * x_mask
237
+ x = self.enc(x, x_mask, g=g)
238
+ stats = self.proj(x) * x_mask
239
+ m, logs = torch.split(stats, self.out_channels, dim=1)
240
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
241
+ return z, m, logs, x_mask
242
+
243
+
244
+ class Generator(torch.nn.Module):
245
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
246
+ super(Generator, self).__init__()
247
+ self.num_kernels = len(resblock_kernel_sizes)
248
+ self.num_upsamples = len(upsample_rates)
249
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
250
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
251
+
252
+ self.ups = nn.ModuleList()
253
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
254
+ self.ups.append(weight_norm(
255
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
256
+ k, u, padding=(k-u)//2)))
257
+
258
+ self.resblocks = nn.ModuleList()
259
+ for i in range(len(self.ups)):
260
+ ch = upsample_initial_channel//(2**(i+1))
261
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
262
+ self.resblocks.append(resblock(ch, k, d))
263
+
264
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
265
+ self.ups.apply(init_weights)
266
+
267
+ if gin_channels != 0:
268
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
269
+
270
+ def forward(self, x, g=None):
271
+ x = self.conv_pre(x)
272
+ if g is not None:
273
+ x = x + self.cond(g)
274
+
275
+ for i in range(self.num_upsamples):
276
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
277
+ x = self.ups[i](x)
278
+ xs = None
279
+ for j in range(self.num_kernels):
280
+ if xs is None:
281
+ xs = self.resblocks[i*self.num_kernels+j](x)
282
+ else:
283
+ xs += self.resblocks[i*self.num_kernels+j](x)
284
+ x = xs / self.num_kernels
285
+ x = F.leaky_relu(x)
286
+ x = self.conv_post(x)
287
+ x = torch.tanh(x)
288
+
289
+ return x
290
+
291
+ def remove_weight_norm(self):
292
+ print('Removing weight norm...')
293
+ for l in self.ups:
294
+ remove_weight_norm(l)
295
+ for l in self.resblocks:
296
+ l.remove_weight_norm()
297
+
298
+
299
+ class DiscriminatorP(torch.nn.Module):
300
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
301
+ super(DiscriminatorP, self).__init__()
302
+ self.period = period
303
+ self.use_spectral_norm = use_spectral_norm
304
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
305
+ self.convs = nn.ModuleList([
306
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
307
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
308
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
309
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
310
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
311
+ ])
312
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
313
+
314
+ def forward(self, x):
315
+ fmap = []
316
+
317
+ # 1d to 2d
318
+ b, c, t = x.shape
319
+ if t % self.period != 0: # pad first
320
+ n_pad = self.period - (t % self.period)
321
+ x = F.pad(x, (0, n_pad), "reflect")
322
+ t = t + n_pad
323
+ x = x.view(b, c, t // self.period, self.period)
324
+
325
+ for l in self.convs:
326
+ x = l(x)
327
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
328
+ fmap.append(x)
329
+ x = self.conv_post(x)
330
+ fmap.append(x)
331
+ x = torch.flatten(x, 1, -1)
332
+
333
+ return x, fmap
334
+
335
+
336
+ class DiscriminatorS(torch.nn.Module):
337
+ def __init__(self, use_spectral_norm=False):
338
+ super(DiscriminatorS, self).__init__()
339
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
340
+ self.convs = nn.ModuleList([
341
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
342
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
343
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
344
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
345
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
346
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
347
+ ])
348
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
349
+
350
+ def forward(self, x):
351
+ fmap = []
352
+
353
+ for l in self.convs:
354
+ x = l(x)
355
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
356
+ fmap.append(x)
357
+ x = self.conv_post(x)
358
+ fmap.append(x)
359
+ x = torch.flatten(x, 1, -1)
360
+
361
+ return x, fmap
362
+
363
+
364
+ class MultiPeriodDiscriminator(torch.nn.Module):
365
+ def __init__(self, use_spectral_norm=False):
366
+ super(MultiPeriodDiscriminator, self).__init__()
367
+ periods = [2,3,5,7,11]
368
+
369
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
370
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
371
+ self.discriminators = nn.ModuleList(discs)
372
+
373
+ def forward(self, y, y_hat):
374
+ y_d_rs = []
375
+ y_d_gs = []
376
+ fmap_rs = []
377
+ fmap_gs = []
378
+ for i, d in enumerate(self.discriminators):
379
+ y_d_r, fmap_r = d(y)
380
+ y_d_g, fmap_g = d(y_hat)
381
+ y_d_rs.append(y_d_r)
382
+ y_d_gs.append(y_d_g)
383
+ fmap_rs.append(fmap_r)
384
+ fmap_gs.append(fmap_g)
385
+
386
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
387
+
388
+
389
+
390
+ class SynthesizerTrn(nn.Module):
391
+ """
392
+ Synthesizer for Training
393
+ """
394
+
395
+ def __init__(self,
396
+ n_vocab,
397
+ spec_channels,
398
+ segment_size,
399
+ inter_channels,
400
+ hidden_channels,
401
+ filter_channels,
402
+ n_heads,
403
+ n_layers,
404
+ kernel_size,
405
+ p_dropout,
406
+ resblock,
407
+ resblock_kernel_sizes,
408
+ resblock_dilation_sizes,
409
+ upsample_rates,
410
+ upsample_initial_channel,
411
+ upsample_kernel_sizes,
412
+ n_speakers=0,
413
+ gin_channels=0,
414
+ use_sdp=True,
415
+ **kwargs):
416
+
417
+ super().__init__()
418
+ self.n_vocab = n_vocab
419
+ self.spec_channels = spec_channels
420
+ self.inter_channels = inter_channels
421
+ self.hidden_channels = hidden_channels
422
+ self.filter_channels = filter_channels
423
+ self.n_heads = n_heads
424
+ self.n_layers = n_layers
425
+ self.kernel_size = kernel_size
426
+ self.p_dropout = p_dropout
427
+ self.resblock = resblock
428
+ self.resblock_kernel_sizes = resblock_kernel_sizes
429
+ self.resblock_dilation_sizes = resblock_dilation_sizes
430
+ self.upsample_rates = upsample_rates
431
+ self.upsample_initial_channel = upsample_initial_channel
432
+ self.upsample_kernel_sizes = upsample_kernel_sizes
433
+ self.segment_size = segment_size
434
+ self.n_speakers = n_speakers
435
+ self.gin_channels = gin_channels
436
+
437
+ self.use_sdp = use_sdp
438
+
439
+ self.enc_p = TextEncoder(n_vocab,
440
+ inter_channels,
441
+ hidden_channels,
442
+ filter_channels,
443
+ n_heads,
444
+ n_layers,
445
+ kernel_size,
446
+ p_dropout)
447
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
448
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
449
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
450
+
451
+ if use_sdp:
452
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
453
+ else:
454
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
455
+
456
+ if n_speakers > 1:
457
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
458
+
459
+ def forward(self, x, x_lengths, y, y_lengths, sid=None):
460
+
461
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
462
+ if self.n_speakers > 0:
463
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
464
+ else:
465
+ g = None
466
+
467
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
468
+ z_p = self.flow(z, y_mask, g=g)
469
+
470
+ with torch.no_grad():
471
+ # negative cross-entropy
472
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
473
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
474
+ neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
475
+ neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
476
+ neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
477
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
478
+
479
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
480
+ attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
481
+
482
+ w = attn.sum(2)
483
+ if self.use_sdp:
484
+ l_length = self.dp(x, x_mask, w, g=g)
485
+ l_length = l_length / torch.sum(x_mask)
486
+ else:
487
+ logw_ = torch.log(w + 1e-6) * x_mask
488
+ logw = self.dp(x, x_mask, g=g)
489
+ l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
490
+
491
+ # expand prior
492
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
493
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
494
+
495
+ z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
496
+ o = self.dec(z_slice, g=g)
497
+ return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
498
+
499
+ def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
500
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
501
+ if self.n_speakers > 0:
502
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
503
+ else:
504
+ g = None
505
+
506
+ if self.use_sdp:
507
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
508
+ else:
509
+ logw = self.dp(x, x_mask, g=g)
510
+ w = torch.exp(logw) * x_mask * length_scale
511
+ w_ceil = torch.ceil(w)
512
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
513
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
514
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
515
+ attn = commons.generate_path(w_ceil, attn_mask)
516
+
517
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
518
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
519
+
520
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
521
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
522
+ o = self.dec((z * y_mask)[:,:,:max_len], g=g)
523
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
524
+
525
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
526
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
527
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
528
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
529
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
530
+ z_p = self.flow(z, y_mask, g=g_src)
531
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
532
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
533
+ return o_hat, y_mask, (z, z_p, z_hat)
534
+
models/Mika/cover.png ADDED
models/Yuuka/cover.png ADDED
models/model_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"Yuuka": {"name_en": "Yuuka", "name_zh": "\u65e9\u6fd1\u4f18\u9999", "cover": "models/Yuuka/cover.png", "sid": 0, "example": "\u5148\u751f\u3002\u4eca\u65e5\u3082\u5168\u529b\u3067\u3042\u306a\u305f\u3092\u30a2\u30b7\u30b9\u30c8\u3057\u307e\u3059\u306d\u3002", "language": "JP", "type": "single", "model_path": "models\\Yuuka\\Yuuka.pth"}, "Mika": {"name_en": "Mika", "name_zh": "\u5723\u56ed\u672a\u82b1", "cover": "models\\Mika\\cover.png", "sid": "0", "example": "\u304a\u304b\u3048\u308a\u3001\u5148\u751f\uff01\u3061\u3083\u30fc\u3093\u3068\u3044\u3044\u5b50\u3067\u304a\u7559\u5b88\u756a\u3057\u3066\u305f\u3088\u3002", "language": "JP", "type": "single", "model_path": "models\\Mika\\Mika.pth"}}
models/parappa/config.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 100,
4
+ "eval_interval": 500,
5
+ "seed": 109652,
6
+ "epochs": 20001,
7
+ "learning_rate": 0.00015,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 30,
14
+ "fp16_run": false,
15
+ "bf16_run": false,
16
+ "lr_decay": 0.999875,
17
+ "segment_size": 10240,
18
+ "init_lr_ratio": 1,
19
+ "warmup_epochs": 0,
20
+ "c_mel": 45,
21
+ "c_kl": 1.0,
22
+ "use_sr": true,
23
+ "max_speclen": 512,
24
+ "port": "8001",
25
+ "keep_ckpts": 3
26
+ },
27
+ "data": {
28
+ "training_files": "filelists/44k/train.txt",
29
+ "validation_files": "filelists/44k/val.txt",
30
+ "max_wav_value": 32768.0,
31
+ "sampling_rate": 44100,
32
+ "filter_length": 2048,
33
+ "hop_length": 512,
34
+ "win_length": 2048,
35
+ "n_mel_channels": 80,
36
+ "mel_fmin": 0.0,
37
+ "mel_fmax": 22050
38
+ },
39
+ "model": {
40
+ "inter_channels": 192,
41
+ "hidden_channels": 192,
42
+ "filter_channels": 768,
43
+ "n_heads": 2,
44
+ "n_layers": 6,
45
+ "kernel_size": 3,
46
+ "p_dropout": 0.1,
47
+ "resblock": "1",
48
+ "resblock_kernel_sizes": [
49
+ 3,
50
+ 7,
51
+ 11
52
+ ],
53
+ "resblock_dilation_sizes": [
54
+ [
55
+ 1,
56
+ 3,
57
+ 5
58
+ ],
59
+ [
60
+ 1,
61
+ 3,
62
+ 5
63
+ ],
64
+ [
65
+ 1,
66
+ 3,
67
+ 5
68
+ ]
69
+ ],
70
+ "upsample_rates": [
71
+ 8,
72
+ 8,
73
+ 2,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4,
83
+ 4
84
+ ],
85
+ "n_layers_q": 3,
86
+ "use_spectral_norm": false,
87
+ "gin_channels": 256,
88
+ "ssl_dim": 256,
89
+ "n_speakers": 200
90
+ },
91
+ "spk": {
92
+ "parappa": 0
93
+ }
94
+ }
models/parappa/path.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a712fbabc95b65036407a9a94d85c40630c43cd70193fff3735ba73468dc538
3
+ size 542789469
modules.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+ from transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37
+ super().__init__()
38
+ self.in_channels = in_channels
39
+ self.hidden_channels = hidden_channels
40
+ self.out_channels = out_channels
41
+ self.kernel_size = kernel_size
42
+ self.n_layers = n_layers
43
+ self.p_dropout = p_dropout
44
+ assert n_layers > 1, "Number of layers should be larger than 0."
45
+
46
+ self.conv_layers = nn.ModuleList()
47
+ self.norm_layers = nn.ModuleList()
48
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49
+ self.norm_layers.append(LayerNorm(hidden_channels))
50
+ self.relu_drop = nn.Sequential(
51
+ nn.ReLU(),
52
+ nn.Dropout(p_dropout))
53
+ for _ in range(n_layers-1):
54
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55
+ self.norm_layers.append(LayerNorm(hidden_channels))
56
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57
+ self.proj.weight.data.zero_()
58
+ self.proj.bias.data.zero_()
59
+
60
+ def forward(self, x, x_mask):
61
+ x_org = x
62
+ for i in range(self.n_layers):
63
+ x = self.conv_layers[i](x * x_mask)
64
+ x = self.norm_layers[i](x)
65
+ x = self.relu_drop(x)
66
+ x = x_org + self.proj(x)
67
+ return x * x_mask
68
+
69
+
70
+ class DDSConv(nn.Module):
71
+ """
72
+ Dialted and Depth-Separable Convolution
73
+ """
74
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
+ super().__init__()
76
+ self.channels = channels
77
+ self.kernel_size = kernel_size
78
+ self.n_layers = n_layers
79
+ self.p_dropout = p_dropout
80
+
81
+ self.drop = nn.Dropout(p_dropout)
82
+ self.convs_sep = nn.ModuleList()
83
+ self.convs_1x1 = nn.ModuleList()
84
+ self.norms_1 = nn.ModuleList()
85
+ self.norms_2 = nn.ModuleList()
86
+ for i in range(n_layers):
87
+ dilation = kernel_size ** i
88
+ padding = (kernel_size * dilation - dilation) // 2
89
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
+ groups=channels, dilation=dilation, padding=padding
91
+ ))
92
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
+ self.norms_1.append(LayerNorm(channels))
94
+ self.norms_2.append(LayerNorm(channels))
95
+
96
+ def forward(self, x, x_mask, g=None):
97
+ if g is not None:
98
+ x = x + g
99
+ for i in range(self.n_layers):
100
+ y = self.convs_sep[i](x * x_mask)
101
+ y = self.norms_1[i](y)
102
+ y = F.gelu(y)
103
+ y = self.convs_1x1[i](y)
104
+ y = self.norms_2[i](y)
105
+ y = F.gelu(y)
106
+ y = self.drop(y)
107
+ x = x + y
108
+ return x * x_mask
109
+
110
+
111
+ class WN(torch.nn.Module):
112
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
+ super(WN, self).__init__()
114
+ assert(kernel_size % 2 == 1)
115
+ self.hidden_channels =hidden_channels
116
+ self.kernel_size = kernel_size,
117
+ self.dilation_rate = dilation_rate
118
+ self.n_layers = n_layers
119
+ self.gin_channels = gin_channels
120
+ self.p_dropout = p_dropout
121
+
122
+ self.in_layers = torch.nn.ModuleList()
123
+ self.res_skip_layers = torch.nn.ModuleList()
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if gin_channels != 0:
127
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
+
130
+ for i in range(n_layers):
131
+ dilation = dilation_rate ** i
132
+ padding = int((kernel_size * dilation - dilation) / 2)
133
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134
+ dilation=dilation, padding=padding)
135
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
+ self.in_layers.append(in_layer)
137
+
138
+ # last one is not necessary
139
+ if i < n_layers - 1:
140
+ res_skip_channels = 2 * hidden_channels
141
+ else:
142
+ res_skip_channels = hidden_channels
143
+
144
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
+ self.res_skip_layers.append(res_skip_layer)
147
+
148
+ def forward(self, x, x_mask, g=None, **kwargs):
149
+ output = torch.zeros_like(x)
150
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
+
152
+ if g is not None:
153
+ g = self.cond_layer(g)
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+ if g is not None:
158
+ cond_offset = i * 2 * self.hidden_channels
159
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160
+ else:
161
+ g_l = torch.zeros_like(x_in)
162
+
163
+ acts = commons.fused_add_tanh_sigmoid_multiply(
164
+ x_in,
165
+ g_l,
166
+ n_channels_tensor)
167
+ acts = self.drop(acts)
168
+
169
+ res_skip_acts = self.res_skip_layers[i](acts)
170
+ if i < self.n_layers - 1:
171
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
172
+ x = (x + res_acts) * x_mask
173
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
174
+ else:
175
+ output = output + res_skip_acts
176
+ return output * x_mask
177
+
178
+ def remove_weight_norm(self):
179
+ if self.gin_channels != 0:
180
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
181
+ for l in self.in_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+ for l in self.res_skip_layers:
184
+ torch.nn.utils.remove_weight_norm(l)
185
+
186
+
187
+ class ResBlock1(torch.nn.Module):
188
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189
+ super(ResBlock1, self).__init__()
190
+ self.convs1 = nn.ModuleList([
191
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192
+ padding=get_padding(kernel_size, dilation[0]))),
193
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194
+ padding=get_padding(kernel_size, dilation[1]))),
195
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196
+ padding=get_padding(kernel_size, dilation[2])))
197
+ ])
198
+ self.convs1.apply(init_weights)
199
+
200
+ self.convs2 = nn.ModuleList([
201
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
+ padding=get_padding(kernel_size, 1))),
203
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
+ padding=get_padding(kernel_size, 1))),
205
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206
+ padding=get_padding(kernel_size, 1)))
207
+ ])
208
+ self.convs2.apply(init_weights)
209
+
210
+ def forward(self, x, x_mask=None):
211
+ for c1, c2 in zip(self.convs1, self.convs2):
212
+ xt = F.leaky_relu(x, LRELU_SLOPE)
213
+ if x_mask is not None:
214
+ xt = xt * x_mask
215
+ xt = c1(xt)
216
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
217
+ if x_mask is not None:
218
+ xt = xt * x_mask
219
+ xt = c2(xt)
220
+ x = xt + x
221
+ if x_mask is not None:
222
+ x = x * x_mask
223
+ return x
224
+
225
+ def remove_weight_norm(self):
226
+ for l in self.convs1:
227
+ remove_weight_norm(l)
228
+ for l in self.convs2:
229
+ remove_weight_norm(l)
230
+
231
+
232
+ class ResBlock2(torch.nn.Module):
233
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234
+ super(ResBlock2, self).__init__()
235
+ self.convs = nn.ModuleList([
236
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237
+ padding=get_padding(kernel_size, dilation[0]))),
238
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239
+ padding=get_padding(kernel_size, dilation[1])))
240
+ ])
241
+ self.convs.apply(init_weights)
242
+
243
+ def forward(self, x, x_mask=None):
244
+ for c in self.convs:
245
+ xt = F.leaky_relu(x, LRELU_SLOPE)
246
+ if x_mask is not None:
247
+ xt = xt * x_mask
248
+ xt = c(xt)
249
+ x = xt + x
250
+ if x_mask is not None:
251
+ x = x * x_mask
252
+ return x
253
+
254
+ def remove_weight_norm(self):
255
+ for l in self.convs:
256
+ remove_weight_norm(l)
257
+
258
+
259
+ class Log(nn.Module):
260
+ def forward(self, x, x_mask, reverse=False, **kwargs):
261
+ if not reverse:
262
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
+ logdet = torch.sum(-y, [1, 2])
264
+ return y, logdet
265
+ else:
266
+ x = torch.exp(x) * x_mask
267
+ return x
268
+
269
+
270
+ class Flip(nn.Module):
271
+ def forward(self, x, *args, reverse=False, **kwargs):
272
+ x = torch.flip(x, [1])
273
+ if not reverse:
274
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
+ return x, logdet
276
+ else:
277
+ return x
278
+
279
+
280
+ class ElementwiseAffine(nn.Module):
281
+ def __init__(self, channels):
282
+ super().__init__()
283
+ self.channels = channels
284
+ self.m = nn.Parameter(torch.zeros(channels,1))
285
+ self.logs = nn.Parameter(torch.zeros(channels,1))
286
+
287
+ def forward(self, x, x_mask, reverse=False, **kwargs):
288
+ if not reverse:
289
+ y = self.m + torch.exp(self.logs) * x
290
+ y = y * x_mask
291
+ logdet = torch.sum(self.logs * x_mask, [1,2])
292
+ return y, logdet
293
+ else:
294
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
+ return x
296
+
297
+
298
+ class ResidualCouplingLayer(nn.Module):
299
+ def __init__(self,
300
+ channels,
301
+ hidden_channels,
302
+ kernel_size,
303
+ dilation_rate,
304
+ n_layers,
305
+ p_dropout=0,
306
+ gin_channels=0,
307
+ mean_only=False):
308
+ assert channels % 2 == 0, "channels should be divisible by 2"
309
+ super().__init__()
310
+ self.channels = channels
311
+ self.hidden_channels = hidden_channels
312
+ self.kernel_size = kernel_size
313
+ self.dilation_rate = dilation_rate
314
+ self.n_layers = n_layers
315
+ self.half_channels = channels // 2
316
+ self.mean_only = mean_only
317
+
318
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321
+ self.post.weight.data.zero_()
322
+ self.post.bias.data.zero_()
323
+
324
+ def forward(self, x, x_mask, g=None, reverse=False):
325
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326
+ h = self.pre(x0) * x_mask
327
+ h = self.enc(h, x_mask, g=g)
328
+ stats = self.post(h) * x_mask
329
+ if not self.mean_only:
330
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
331
+ else:
332
+ m = stats
333
+ logs = torch.zeros_like(m)
334
+
335
+ if not reverse:
336
+ x1 = m + x1 * torch.exp(logs) * x_mask
337
+ x = torch.cat([x0, x1], 1)
338
+ logdet = torch.sum(logs, [1,2])
339
+ return x, logdet
340
+ else:
341
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
342
+ x = torch.cat([x0, x1], 1)
343
+ return x
344
+
345
+
346
+ class ConvFlow(nn.Module):
347
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348
+ super().__init__()
349
+ self.in_channels = in_channels
350
+ self.filter_channels = filter_channels
351
+ self.kernel_size = kernel_size
352
+ self.n_layers = n_layers
353
+ self.num_bins = num_bins
354
+ self.tail_bound = tail_bound
355
+ self.half_channels = in_channels // 2
356
+
357
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360
+ self.proj.weight.data.zero_()
361
+ self.proj.bias.data.zero_()
362
+
363
+ def forward(self, x, x_mask, g=None, reverse=False):
364
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365
+ h = self.pre(x0)
366
+ h = self.convs(h, x_mask, g=g)
367
+ h = self.proj(h) * x_mask
368
+
369
+ b, c, t = x0.shape
370
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371
+
372
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
375
+
376
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377
+ unnormalized_widths,
378
+ unnormalized_heights,
379
+ unnormalized_derivatives,
380
+ inverse=reverse,
381
+ tails='linear',
382
+ tail_bound=self.tail_bound
383
+ )
384
+
385
+ x = torch.cat([x0, x1], 1) * x_mask
386
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
387
+ if not reverse:
388
+ return x, logdet
389
+ else:
390
+ return x
monotonic_align/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from .monotonic_align.core import maximum_path_c
4
+
5
+
6
+ def maximum_path(neg_cent, mask):
7
+ """ Cython optimized version.
8
+ neg_cent: [b, t_t, t_s]
9
+ mask: [b, t_t, t_s]
10
+ """
11
+ device = neg_cent.device
12
+ dtype = neg_cent.dtype
13
+ neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
14
+ path = np.zeros(neg_cent.shape, dtype=np.int32)
15
+
16
+ t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
17
+ t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
18
+ maximum_path_c(path, neg_cent, t_t_max, t_s_max)
19
+ return torch.from_numpy(path).to(device=device, dtype=dtype)
monotonic_align/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (809 Bytes). View file
 
monotonic_align/build/lib.win-amd64-cpython-310/monotonic_align/core.cp310-win_amd64.pyd ADDED
Binary file (118 kB). View file
 
monotonic_align/build/temp.win-amd64-cpython-310/Release/core.cp310-win_amd64.exp ADDED
Binary file (780 Bytes). View file
 
monotonic_align/build/temp.win-amd64-cpython-310/Release/core.cp310-win_amd64.lib ADDED
Binary file (1.96 kB). View file
 
monotonic_align/build/temp.win-amd64-cpython-310/Release/core.obj ADDED
Binary file (702 kB). View file
 
monotonic_align/core.c ADDED
The diff for this file is too large to render. See raw diff
 
monotonic_align/core.cp310-win_amd64.pyd ADDED
Binary file (118 kB). View file
 
monotonic_align/core.pyx ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cimport cython
2
+ from cython.parallel import prange
3
+
4
+
5
+ @cython.boundscheck(False)
6
+ @cython.wraparound(False)
7
+ cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
8
+ cdef int x
9
+ cdef int y
10
+ cdef float v_prev
11
+ cdef float v_cur
12
+ cdef float tmp
13
+ cdef int index = t_x - 1
14
+
15
+ for y in range(t_y):
16
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
17
+ if x == y:
18
+ v_cur = max_neg_val
19
+ else:
20
+ v_cur = value[y-1, x]
21
+ if x == 0:
22
+ if y == 0:
23
+ v_prev = 0.
24
+ else:
25
+ v_prev = max_neg_val
26
+ else:
27
+ v_prev = value[y-1, x-1]
28
+ value[y, x] += max(v_prev, v_cur)
29
+
30
+ for y in range(t_y - 1, -1, -1):
31
+ path[y, index] = 1
32
+ if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
33
+ index = index - 1
34
+
35
+
36
+ @cython.boundscheck(False)
37
+ @cython.wraparound(False)
38
+ cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
39
+ cdef int b = paths.shape[0]
40
+ cdef int i
41
+ for i in prange(b, nogil=True):
42
+ maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
monotonic_align/monotonic_align/core.cp310-win_amd64.pyd ADDED
Binary file (118 kB). View file
 
monotonic_align/setup.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from distutils.core import setup
2
+ from Cython.Build import cythonize
3
+ import numpy
4
+
5
+ setup(
6
+ name = 'monotonic_align',
7
+ ext_modules = cythonize("core.pyx"),
8
+ include_dirs=[numpy.get_include()]
9
+ )
preprocess.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import text
3
+ from utils import load_filepaths_and_text
4
+
5
+ if __name__ == '__main__':
6
+ parser = argparse.ArgumentParser()
7
+ parser.add_argument("--out_extension", default="cleaned")
8
+ parser.add_argument("--text_index", default=2, type=int)
9
+ parser.add_argument("--filelists", nargs="+", default=["filelists/yuuka_train.txt", "filelists/yuuka_val.txt"])
10
+ parser.add_argument("--text_cleaners", nargs="+", default=["japanese_cleaners"])
11
+
12
+ args = parser.parse_args()
13
+
14
+
15
+ for filelist in args.filelists:
16
+ print("START:", filelist)
17
+ filepaths_and_text = load_filepaths_and_text(filelist)
18
+ for i in range(len(filepaths_and_text)):
19
+ original_text = filepaths_and_text[i][args.text_index]
20
+ cleaned_text = text._clean_text(original_text, args.text_cleaners)
21
+ filepaths_and_text[i][args.text_index] = cleaned_text
22
+
23
+ new_filelist = filelist + "." + args.out_extension
24
+ with open(new_filelist, "w", encoding="utf-8") as f:
25
+ f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cython
2
+ librosa
3
+ matplotlib
4
+ numpy
5
+ scipy
6
+ tensorboard
7
+ torch
8
+ torchvision
9
+ unidecode
10
+ pyopenjtalk
11
+ protobuf
12
+ tqdm
13
+ gradio
text/LICENSE ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2017 Keith Ito
2
+
3
+ Permission is hereby granted, free of charge, to any person obtaining a copy
4
+ of this software and associated documentation files (the "Software"), to deal
5
+ in the Software without restriction, including without limitation the rights
6
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
+ copies of the Software, and to permit persons to whom the Software is
8
+ furnished to do so, subject to the following conditions:
9
+
10
+ The above copyright notice and this permission notice shall be included in
11
+ all copies or substantial portions of the Software.
12
+
13
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19
+ THE SOFTWARE.
text/__init__.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+ from text import cleaners
3
+ from text.symbols import symbols
4
+
5
+
6
+ # Mappings from symbol to numeric ID and vice versa:
7
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
8
+ _id_to_symbol = {i: s for i, s in enumerate(symbols)}
9
+
10
+
11
+ def text_to_sequence(text, cleaner_names):
12
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
13
+ Args:
14
+ text: string to convert to a sequence
15
+ cleaner_names: names of the cleaner functions to run the text through
16
+ Returns:
17
+ List of integers corresponding to the symbols in the text
18
+ '''
19
+ sequence = []
20
+
21
+ clean_text = _clean_text(text, cleaner_names)
22
+ for symbol in clean_text:
23
+ if symbol not in _symbol_to_id.keys():
24
+ continue
25
+ symbol_id = _symbol_to_id[symbol]
26
+ sequence += [symbol_id]
27
+ return sequence
28
+
29
+
30
+ def cleaned_text_to_sequence(cleaned_text):
31
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
32
+ Args:
33
+ text: string to convert to a sequence
34
+ Returns:
35
+ List of integers corresponding to the symbols in the text
36
+ '''
37
+ sequence = [_symbol_to_id[symbol] for symbol in cleaned_text if symbol in _symbol_to_id.keys()]
38
+ return sequence
39
+
40
+
41
+ def sequence_to_text(sequence):
42
+ '''Converts a sequence of IDs back to a string'''
43
+ result = ''
44
+ for symbol_id in sequence:
45
+ s = _id_to_symbol[symbol_id]
46
+ result += s
47
+ return result
48
+
49
+
50
+ def _clean_text(text, cleaner_names):
51
+ for name in cleaner_names:
52
+ cleaner = getattr(cleaners, name)
53
+ if not cleaner:
54
+ raise Exception('Unknown cleaner: %s' % name)
55
+ text = cleaner(text)
56
+ return text
text/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.13 kB). View file
 
text/__pycache__/cleaners.cpython-310.pyc ADDED
Binary file (712 Bytes). View file
 
text/__pycache__/japanese.cpython-310.pyc ADDED
Binary file (4.15 kB). View file
 
text/__pycache__/symbols.cpython-310.pyc ADDED
Binary file (424 Bytes). View file