File size: 4,675 Bytes
0b36c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7077ad
2f7472f
0b36c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117d01c
 
7b5ef76
a546cb7
4453391
117d01c
0b36c03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import requests
import gradio as gr
import numpy as np
import cv2
import torch
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
from config import get_config
from model import build_model

# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

def parse_option():
    parser = argparse.ArgumentParser('UniCL demo script', add_help=False)
    parser.add_argument('--cfg', type=str, default="configs/unicl_swin_base.yaml", metavar="FILE", help='path to config file', )
    args, unparsed = parser.parse_known_args()

    config = get_config(args)

    return args, config

def build_transforms(img_size, center_crop=True):
    t = [transforms.ToPILImage()]
    if center_crop:
        size = int((256 / 224) * img_size)
        t.append(
            transforms.Resize(size)
        )
        t.append(
            transforms.CenterCrop(img_size)    
        )
    else:
        t.append(
            transforms.Resize(img_size)
        )        
    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
    return transforms.Compose(t)

def build_transforms4display(img_size, center_crop=True):
    t = [transforms.ToPILImage()]
    if center_crop:
        size = int((256 / 224) * img_size)
        t.append(
            transforms.Resize(size)
        )
        t.append(
            transforms.CenterCrop(img_size)    
        )
    else:
        t.append(
            transforms.Resize(img_size)
        )  
    t.append(transforms.ToTensor())
    return transforms.Compose(t)

args, config = parse_option()

'''
build model
'''
model = build_model(config)

url = './in21k_yfcc14m_gcc15m_swin_base.pth'
checkpoint = torch.load(url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
model.eval()

'''
build data transform
'''
eval_transforms = build_transforms(224, center_crop=True)
display_transforms = build_transforms4display(224, center_crop=True)

'''
build upsampler
'''
# upsampler = nn.Upsample(scale_factor=16, mode='bilinear')

'''
borrow code from here: https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/utils/image.py
'''
def show_cam_on_image(img: np.ndarray,
                      mask: np.ndarray,
                      use_rgb: bool = False,
                      colormap: int = cv2.COLORMAP_JET) -> np.ndarray:
    """ This function overlays the cam mask on the image as an heatmap.
    By default the heatmap is in BGR format.
    :param img: The base image in RGB or BGR format.
    :param mask: The cam mask.
    :param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
    :param colormap: The OpenCV colormap to be used.
    :returns: The default image with the cam overlay.
    """
    heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
    if use_rgb:
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
    heatmap = np.float32(heatmap) / 255

    if np.max(img) > 1:
        raise Exception(
            "The input image should np.float32 in the range [0, 1]")

    cam = 0.7*heatmap + 0.3*img
    # cam = cam / np.max(cam)
    return np.uint8(255 * cam)

def recognize_image(image, texts):
    img_t = eval_transforms(image) 
    img_d = display_transforms(image).permute(1, 2, 0).numpy()

    text_embeddings = model.get_text_embeddings(texts.split(';'))

    # compute output
    feat_img = model.encode_image(img_t.unsqueeze(0))
    output = model.logit_scale.exp() * feat_img @ text_embeddings.t()
    prediction = output.softmax(-1).flatten()

    return {texts.split(';')[i]: float(prediction[i]) for i in range(len(texts.split(';')))}


image = gr.inputs.Image()
label = gr.outputs.Label(num_top_classes=100)

gr.Interface(
    description="UniCL for Zero-shot Image Recognition Demo (https://github.com/microsoft/unicl)",
    fn=recognize_image,
    inputs=["image", "text"],
    outputs=[                   
        label,
    ],
    examples=[
    ["./elephants.png", "an elephant; an elephant walking in the river; four elephants walking in the river"], 
    ["./apple_with_ipod.jpg", "an ipod; an apple with a write note 'ipod'; an apple"], 
    ["./crowd2.jpg", "a street; a street with a woman walking in the middle; a street with a man walking in the  middle"],
    ["./zebras.png", "three zebras on the grass; two zebras on the grass; one zebra on the grass; no zebra on the grass; four zebras on the grass"], 
    ],
).launch()